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1 Manifolds constructed by Okamoto

Each Painlevé equation is equivalent to a polynomial Hamiltonian sys-
tem, namely, the J-th Painlevé equation is equivalent to a Hamiltonian
system (which we call the J-th Painlevé system)

dx/dt = ∂HJ/∂y, dy/dt = − ∂HJ/∂x,

where HJ = HJ(x, y, t) is a polynomial of x and y of which the coeffi-
cients are rational functions of t holomorphic in BJ := P−ΞJ , ΞJ 3 ∞
being the fixed singular points of the J-th Painlevé equation (Ref. 2).
Here the equivalece means that the second order nonlinear differential
equation in x obtained from the J-th Painlevé system by elimination of
y is just the J-th Painlevé equation.

The J-th Painlevé system defines a nonsingular foliation of the trivial
fiber space (C2×BJ , πJ , BJ) every leaf of which is transversal to fibers.
However, the foliation is not uniform. (Uniformity means that for any
point P0 ∈ C2 × BJ , every curve in BJ with starting point πJ(P0) can
be lifted on the leaf passing through the point P0.)

In the paper Ref. 5, K. Okamoto constructed, for each J , a fiber space
(EJ , πJ , BJ ) having the (C2 × BJ , πJ , BJ ) as a fiber subspace so that
the extension of the J-th Painlevé system defines a uniform foliation
of EJ . The uniformity of the foliation is equivalent to the so-called
Painlevé property which is stated as: for any (x0, y0, t0) ∈ C2 × BJ ,
x(t) and y(t) can be meromorphically continued along any curve in BJ

with starting point t0, where (x(t), y(t)) is the local solution of the J-th
Painlevé system satisfying the initial condition (x(t0), y(t0)) = (x0, y0).
Okamoto called each fiber EJ(t) := π−1

J (t) the space of initial conditions,
because there is a bijection from EJ(t) to the set of all solutions of the
J-th Painlevé system, however he did not name the total space EJ itself.
So I call it defining manifold in this note.

Okamoto constructed each fiber EJ (t) (t ∈ BJ) by compactification
of C2 × t, 8 times quadratic transformations (the result is denoted by

1



E(t)), and removing of divisors of self-intersection number −2. Then he
obtained the defining manifold EJ =

⊔
t∈BJ

EJ(t).
The manifold EJ (J = V I, ..., II) is described as a patching of sev-

eral charts {VJ (∗) = C2 × BJ}∗ by rational and symplectic coordinate
transformations (Ref. 9, 10), and then the J-th Painlevé system can be
extended to a Hamiltonian system on EJ . We call the system the J-th
extended Painlevé system. We can verify moreover that each Hamilto-
nian HJ(∗) on the chart VJ(∗) is a polynomial of x(∗) and y(∗) of which
the coefficeints are rational functions of t holormophic in BJ , where
(x(∗), y(∗), t) is the coordinates of VJ(∗) ' C2 × BJ . Therefore, the
J-th extended Painlevé system defines a nonsingular foliation F = FJ

of EJ every leaf of which is transversal to fibers, and the well-known
Painlevé property guarantees the uniformity of the foliation, that is,

for any point P0 ∈ EJ , every curve in BJ with starting point
πJ (P0) can be lifted on the leaf FP0 passing through the point
P0.

We remark that Hamiltonian system holomorphic on EJ and mero-
morphic on EJ :=

⊔
t∈BJ

EJ(t) is necessarily the J-th extended Painlevé
system (Ref. 9, 11). Then we can roughly say that the manifold EJ

knows everything about the J-th Painlevé system. On the other hand,
Bäcklund transformations found by Okamoto (Ref. 6) can be easily de-
rived from a description of the manifold, which is a work of H. Watanabe
(Ref. 12). Anyway, it seems that the manifold EJ plays an important
role in the study of the J-th Painlevé system.

Now we notice that the manifold EJ is obtained without a knowledge
of Painlevé property. Therefore it is preferable to show uniformity of
the foliation of EJ defined by the J-th extended Hamiltonian system by
using only the description of EJ and the Hamiltonians HJ (∗) on VJ(∗).
I have not yet obtained any purely geometric proof of uniformity, but
the original proof of P. Painlevé (Ref. 7, 8) and M. Hukuhara (Ref. 1)
can be made clear geometrically to some extent.

In the following, we give a proof of uniformity of the foliation associ-
ated with the IV -th extended Painlevé system as an example. The other
cases are quite similar to the case J = IV . The most important part is
how to choose auxiliary functions UJ on EJ which are a kind of Lyapunov
functions. Although P. Painlevé did not explain why such functions were
chosen, we can now understand the reason because we have the defining
manifolds and the extended Painlevé systems on them. As we see in the
next section, there are many choices of such functions, but the following
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ones seem to be simple and convenient to deal with:

UV I(x, y, t) = HV I(x, y, t)− (t− c)x(x− 1)y/[t(t− 1)(x− c)],
UV (x, y, t) = HV (x, y, t)− (1− c)x(x− 1)y/[t(x− c)],

UIV (x, y, t) = HIV (x, y, t) + 2xy/(x− c),
UIII′(x, y, t) = HIII′(x, y, t) + cxy/[t(x− c)],
UIII(x, y, t) = HIII(x, y, t) + (tx + c)xy/[t(tx− c)],
UII(x, y, t) = HII(x, y, t) + y/2x,

UI(x, y, t) = HI(x, y, t) + y/2x.

Here, UJ(x, y, t) is a restriction of UJ on the original chart VJ(00) '
C2 × BJ 3 (x, y, t), HJ(x, y, t) is the Hamiltonian of the J-th Painlevé
system, and the III ′-th system is an system equivalent to the III-th
one (Ref. 2).

2 The IV -th extended Painlevé system

The Hamiltonian H := HIV of the IV -th Painlevé system is given by

H(x, y, t) = 2xy2 − {x2 + 2tx + 2κ0}y + κ∞x. (2.1)

The manifold E := EIV which is the total space of (EIV , πIV , BIV ) is
described as a patching of 4 copies V (∗) = C2×B 3 (x(∗), y(∗), t) (B :=
BIV = C, ∗ = 00, 0∞,∞0,∞∞) identified by the following rational and
symplectic transformations:

x(00) = y(0∞){κ0 − x(0∞)y(0∞)}, y(00) =
1

y(0∞)
,

x(00) =
1

x(∞0)
, y(00) = x(∞0){κ∞ − x(∞0)y(∞0)},

x(00) =
1

x(∞∞)
,

y(00) =
1

2x(∞∞)
+ t + x(∞∞){(κ0 − κ∞ − 1)− x(∞∞)y(∞∞)}.

Here,
V (00) = C2 ×B 3 (x(00), y(00), t) = (x, y, t)
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is the original chart of the IV -th Painlevé system. Note that each fiber
E(t) is a disjoint union of V (00) ∩ π−1(t) = C2 × t and 3 complex lines
in V (0∞) ∩ π−1(t), V (∞0) ∩ π−1(t), V (∞∞) ∩ π−1(t):

E(t) = C2 t {y(0∞) = 0} t {x(∞0) = 0} t {x(∞∞) = 0}.

Notice also the fiber is not compact.
The IV -th extended Painlevé system is given by 4 Hamiltonians

H(∗) = H(∗)(x(∗), y(∗), t) defined on V (∗). Notice that {H(∗)}∗ does
not define a function on E but they are related by

H(00) = H(0∞) = H(∞0) = H(∞∞)− 1/x(∞∞),

because

dy(00) ∧ dx(00)− dH(00) ∧ dt = dy(∗) ∧ dx(∗)− dH(∗) ∧ dt.

We can verify that each H(∗) is a polynomial of x(∗), y(∗), and t. There-
fore, the extension of H = H(00) to the whole manifold E is meromor-
phic whose poles are only on {x(∞∞) = 0} in V (∞∞).

3 Lemmas

In this section, we give lemmas which are used in the proof of uniformity
of the foliation associated with the IV -th Painlevé system. Note that
curves in this note are always supposed to be of finite length and they
are parametrized by their arc length.

Lemma 1(Painlevé). Let P0 ∈ E, γ : [0, l] → B, γ(0) = t0 =
π(P0), γ(l) = a such that γ − {a} := γ([0, l)) can be lifted on the leaf
FP0 passing through the point P0. We denote by P (t) the point on the
leaf FP0 correspoinding to t ∈ γ−{a}. If there exists a sequence of points
{tn} on γ−{a} such that tn → a and P (tn) tends to a point P∞ ∈ E(a)
in E as n →∞, then the whole curve γ can be lifted on FP0 .

This lemma is an immediate consequence of existence and uniqueness
theorem for ordinary differential equations in the complex domains.

Lemma 2. Let P0 ∈ E and let γ be a curve: [0, l] → B, γ(0) = t0 =
π(P0), γ(l) = a such that γ(s) is right differentiable at every s ∈ [0, l) and
γ−{a} can be lifted on the leaf FP0 . If, for some c ∈ C−{0}, ρ > 0, r > 0,
it holds

P (t) ∈ E(t)− {(x, y, t) ∈ V (00) | |x− c| < ρ} (3.1)
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for every t ∈ (γ − {a}) ∩D(a; r), then the whole γ can be lifted on the
leaf FP0 . Here, D(a; r) := {t ∈ C | |t− a| < r}.

In this note, we write the above (3.1) simply as

|x(t)− c| ≥ ρ, t ∈ (γ − {a}) ∩D(a; r). (3.2)

We give a proof of the lemma in Section 5.

Lemma 3. Let f = f(x, y, t) and g = g(x, y, t) be functions which are
holomorphic on G(ρ0) := {(x, y, t) ∈ C3 | |x− c|, |1/y|, |t− a| ≤ ρ0} and
satisfy, for some positive constants l−1, l1, l, m with 7/8 < l−1/l1 < 1,

l−1|y| ≤ |f(x, y, t)| ≤ l1|y|, (3.3)

|g(x, y, t)| ≤ m|y|2, (3.4)

|f(x, y, t)− f(x′, y′, t′)| ≤ l{|y − y′|+ (|x− x′|+ |t− t′|)|y′|} (3.5)

for any (x, y, t), (x′, y′, t′) ∈ G(ρ0). Then, for any l2(> l1) with l−1/l2 >
7/8, there exist some positive constants ρ and ε with ρ ≤ ε/(8m) such
that, for any (x1, y1, t1) ∈ G(ρ), the solution (x(t), y(t)) of

dx/dt = f(x, y, t), dy/dt = g(x, y, t)

with (x(t1), y(t1)) = (x1, y1) exists on |t− t1| ≤ ε/(l2m|y1|) and it satis-
fies

|x(t)− c| ≥ 1
4

ε

m
,

(
1
2

ε

l2m|y1| ≤ |t− t1| ≤ ε

l2m|y1|
)

,

|x(t)− c| ≥ 3
4

ε

m
,

(
|t− t1| = ε

l2m|y1|
)

,

|x(t)− c| ≤ 5
8

ε

m
,

(
|t− t1| ≤ 1

2
ε

l2m|y1|
)

.

This lemma (which is a system version of that in Ref. 1) says that,
although |x(t1)−c| is small, |x(t)−c| is bounded below if t parts suitably
from t1, because |y(t1)| is large. In this note, we omit its proof.
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4 Sketch of the proof of uniformity

4.1 First half

Let us take a point P0 ∈ E arbitrarily and fix it. Denote by t0 the point
π(P0). Let S be a set of all positive r’s such that any curve in

D(t0; r) := {t ∈ B = C | |t− t0| < r}
(with starting point t0) can be lifted on the leaf FP0 . If S is unbounded,
then we have nothing to prove. Therefore, assuming that S is bounded,
we derive a contradiction.

Suppose that S is bounded and let

R := sup S.

Then there exists a point a ∈ ∂D(t0; R) such that no curve γ : [0, l] →
B = C with

γ(0) = t0, γ(l) = a, γ([0, l)) ⊂ D(t0;R)

can be lifted on the leaf FP0 . Here note that γ − {a} can be lifted on
FP0 by the definition of R.

If there exist some c ∈ C−{0}, ρ > 0, r > 0 such that (3.2) holds on
the line segment t0a − {a}, then, by Lemma 2, the whole line segment
t0a can be lifted on FP0 . Therefore, for any c ∈ C−{0}, ρ > 0, r > 0, the
inequality (3.2) does not hold, namely, for any c ∈ C−{0}, ρ > 0, r > 0,
there exists a t ∈ (t0a− {a}) ∩D(a; r) such that

|x(t)− c| ≤ ρ.

If, for any c ∈ C−{0}, ρ > 0, r > 0, there exists a t ∈ (t0a−{a})∩D(a; r)
such that

|x(t)− c| ≤ ρ, |1/y(t)| > ρ,

then, for fixed c ∈ C − {0} and ρ > 0, we can find a sequence {tn} ⊂
t0a−{a} such that tn → a and (x(tn), y(tn), tn) ∈ V (00) ⊂ E tends to a
point (x∞, y∞, a) ∈ V (00) ⊂ E in E as n →∞, and then t0a can be lifted
on the leaf FP0 by Lemma 1. Therefore, for any c ∈ C−{0}, ρ > 0, r > 0,
there exists a t ∈ (t0a− {a}) ∩D(a; r) such that

|x(t)− c| ≤ ρ, |1/y(t)| ≤ ρ,

namely, for any c ∈ C−{0}, ρ > 0, the point a is an accumulation point
of a set

{t ∈ t0a− {a} | |x(t)− c|, |1/y(t)| ≤ ρ}. (4.1)
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Take c ∈ C − {0} arbitrarily and fix it. By the form of the Hamil-
tonian H = H(00) and the fact c 6= 0, we can take constants 0 <
ρ0 << 1, l−1, l1, l, m with 7/8 < l−1/l1 < 1 so that f := ∂H/∂y and
g := −∂H/∂x satisfy the inequalities (3.3), (3.4), (3.5). Then, for arbi-
trarily chosen l2(> l1) with l−1/l2 > 7/8, we can take some ρ, ε > 0 with
ρ ≤ ε/(8m) so that the conclusion of Lemma 3 holds.

4.2 Second half

Let us fix c 6= 0, ρ > 0 and other constants as above. Notice that the
point t = a is an accumulation point of the set (4.1).

We fist take a point t1 ∈ t0a− {a} such that

|x(t1)− c|, |1/y(t1)| ≤ ρ.

Let τ ′1, τ
′′
1 (or t′1, t

′′
1) be the intersection points of the line t0a and the

circle {|t− t1| = ε/(2l2m|y1|)} (or {|t− t1| = ε/(l2m|y1|)}) such that τ ′′1
(or t′′1) is nearer to a than τ ′1 (or t′1), where y1 := y(t1). We replace line
segment τ ′1τ

′′
1 by a semi-circle C1 from τ ′1 to τ ′′1 on the circle {|t− t1| =

ε/(2l2m|y1|)}. Then |x(t) − c| ≥ ε/(4m)(> ρ) on C1, t′1τ
′
1, and τ ′′1 t′′1 .

We see that D(t1; ε/(l2m|y1|)) ⊂ D(t0; R) by our assumption that S is
bounded.

Next we take a point t2 nearest to t′′1 in

{t ∈ t′′1a− {a} | |x(t)− c|, |y(t)| ≤ ρ}.

Let τ ′2, τ
′′
2 (or t′2, t

′′
2) be the intersection points of t0a and {|t − t2| =

ε/(2l2m|y2|)} (or {|t− t2| = ε/(l2m|y2|)}) such that τ ′′2 (or t′′2) is nearer
to a than τ ′2 (or t′2), where y2 := y(t2). We replace τ ′2τ

′′
2 by a semi-circle

C2 from τ ′2 to τ ′′2 on the circle {|t−t2| = ε/(2l2m|y2|)}. Then |x(t)−c| ≥
ε/(4m)(> ρ) on C2, t′2τ

′
2, and τ ′′2 t′′2 . Notice that D(t2; ε/(l2m|y2|)) ⊂

D(t0;R).
The two semi-circles C1 and C2 are separated, becuase

D(t1; ε/(l2m|y1|)) ∩D(t2; ε/(2l2m|y2|)) = φ,

which is derived as: if the left-hand side is not empty, t′′1 is a point in it,
which yields |x(t′′1)− c| ≥ (3ε)/(4m) and ≤ (5ε)/(8m).

By the assumption that S is bounded, we can continue the above
processes infinitely many times, namely we can choose infinitely many
semi-circles Cn, n = 1, 2, . . . (of which the centers are tn, n = 1, 2, . . .) in
D(t0;R) which are separated mutually. We can also verify that tn → a
as n →∞ and |x(t)− c| > ρ, t ∈ t′′kτ ′k+1 for all sufficiently large k.
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Let γ be a curve obtained from t0a by replacement of subsegments
by {Cn}. Then |x(t)− c| > ρ, t ∈ (γ − {a}) ∩D(a; r) for some positive
small r, which implies that γ can be lifted on FP0 . This contradicts our
assumption.

5 Proof of Lemma 2

5.1 Auxiliary function U

We introduce an auxiliary function U on E by

U |V (00) = H(x, y, t) +
2xy

x− c
, (5.1)

where U |V (00) is the restriction of U on V (00), (x, y, t) = (x(00), y(00), t)
is the coordinate system of the the original chart V (00), and H(x, y, t)
is the Hamiltonian (2.1) of the IV -the Painlevé system. We write (5.1)
simply as

U = 2xy2 −
{

x2 + 2tx + 2κ0 − 2x

x− c

}
y + κ∞x. (5.2)

The function U is meromorphic on E having poles on {x = c} in
V (00). As we have noticed in Section 2, the extension of the origi-
nal Hamiltonian H = H(00) to the whole manifold E has poles on
{x(∞∞) = 0} in V (∞∞). The term 2xy/(x − c) is added in order to
move the pole divisor from {x(∞∞) = 0} to {x = c}.

5.2 Boundedness of U(P (t)) on γ − {a}
Let U ′ be a function on E such that

dU(P (t))/dt = U ′(P (t))

for any local leaf
⊔

t P (t) of the foliation. Then the restriction of U ′ on
V (00) is given by

U ′|V (00) =
∂H

∂t
− 2cy

(x− c)2
∂H

∂y
− 2x

x− c

∂H

∂x
. (5.3)

By eliminating the variable y in (5.2) and (5.3), we obtain a relation

(U ′ + AU + B)2 + C(U ′ + AU + B) + (DU + E) = 0
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where A,B,C, D and E are certain rational functions of x and t. We
can verify that these functions are holomorphic in (P−{c})×C 3 (x, t),
which implies

|U ′| < m|U |+ n (5.4)

on
⊔

t∈γ(E(t)−{(x, y, t) ∈ V (00) | |x− c| < ρ}), for some positive m and
n.

We set
U(s) := U(P (t(s))), s ∈ [0, l).

Since U(s) is right differentiable at any s ∈ [0, l), |U(s)| is also right
differentiable at s ∈ [0, l) and from the inequality (5.4), it follows

D+|U(s)| < m|U(s)|+ n, s ∈ [0, l).

Hence U(P (t)) is bounded on γ − {a}.

5.3 Reduction to Lemma 1

In this part, the description of the manifold EJ seems to play the most
important role. Since U(P (t)) is bounded on γ − {a}, we can choose a
sequence of points {tn} on γ−{a} so that U(P (tn)) tends to a constant
U∞ ∈ C and x(tn) tends to a x∞ ∈ P− {c} as n →∞. Now we notice
the relation among y(t), x(t) and U(t) := U(P (t)) for t ∈ γ − {a}:

y =
{x2 + 2tx + 2κ0 − 2x/(x− c)} ±

√
{. . .}2 − 8x(κ∞x− U)

4x
. (5.5)

The case x∞ 6= 0,∞. By (5.5), {y(tn)}n is bounded. Then we take a
subsequence of {tn} which is also denoted by {tn} so that (x(tn), y(tn), tn)
∈ V (00) tends to a point (x∞, y∞, a) ∈ V (00). Hence, from Lemma 1,
γ − {a} is lifted on the leaf FP0 .

The case x∞ = 0. If {y(tn)}n is bounded, then γ − {a} is lifted
on FP0 by Lemma 1, and hence we consider the case where {y(tn)}n

is unbouded. We take a subsequence which is denoted by the same
symbol so that x(tn) → 0 and y(tn) → ∞ as n → ∞. In this case,
we observe the behavior of {P (tn)}n by the use of chart V (0∞). Let
(X, Y ) := (x(0∞), y(0∞)), then

X = y(κ0 − xy), Y = 1/y

and Y (tn) → 0 as n →∞. Since

xy =
1
2

{
x2 + 2tx + 2κ0 − 2x

x− c

}
− 1

2y
(κ∞x− U)
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we see
x(tn)y(tn) → κ0

as n →∞. From this and from

X = y(κ0 − xy) = −1
2
x · xy − t · xy +

xy

x− c
+

κ∞x− U

2

if follows that

X(tn) → −aκ0 − κ0/(a− c)− U∞/2 =: X∞ ∈ C

namely, (X(tn), Y (tn), tn) → (X∞, 0, a) ∈ V (0∞). Hence γ − {a} is
lifted on FP0 .

The case x∞ = ∞. Since |x(tn)| is large for every large n, we have

y(tn) = x(tn)/2 + tn + O(1/x(tn)) or O(1/x(tn))

by (5.5). Therefore, we can take a subsequence so that y(tn) → ∞ or
y(tn) → 0 as n →∞.

The case x(tn) →∞, y(tn) →∞. In this case, we observe {P (tn)}n

by the use of V (∞∞). Let (X, Y ) := (x(∞∞), y(∞∞)), then

X = 1/x, Y = x {(κ0 − κ∞ − 1)− x(y − x/2− t)} .

We first obtain x(tn)/y(tn) → 2 and next

(X(tn), Y (tn), tn) → (0, c− 2κ∞a− U∞, a) ∈ V (∞∞)

by the use of

Y = c
x

x− c
− κ∞t

x

y
− κ0κ∞

1
y

+ κ∞
x

x− c

1
y

+
κ∞2

2
x

y

1
y
− κ∞

2
U

y2
− U

2
x

y
.

Hence γ − {a} is lifted on FP0 .
The case x(tn) → ∞, y(tn) → 0. In this case, we use V (∞0). Let

(X, Y ) := (x(∞0), y(∞0)), then X = 1/x, Y = x(κ∞ − xy). We have
first x(tn)y(tn) → κ∞ and next

(X(tn), Y (tn), tn) → (0, 2κ∞a− 2κ∞/(a− c) + U∞, a) ∈ V (∞0).

Hence γ − {a} is lifted on FP0 .
We have thus completed the proof of Lemma 2.
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Pura Appl., 146(1987), 337-381; II, Jap. J. Math., 13(1987), 47-
76; III, Math. Ann., 275(1986), 221-256; IV, Funkcial. Ekvac., 30
(1987), 305-332.
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