
Hierarchy of Bäcklund Transformation Groups of

the Painlevé Systems ∗
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Abstract

For each Painlevé system PJ except the first one, we have a Bäcklund
transformation group which is a lift of an affine Weyl group. In this paper,
we show that the Bäcklund transformation groups for J = V, IV, III, II
are successively obtained from that for J = V I by the well known degen-
eration or confluence processes.

1 Introduction

The J-th Painlevé system PJ (J = V I, V, IV, III, II, I) which is equivalent
to the J-th Painlevé equation is the following Hamiltonian system

PJ : δJ q = {HJ (q, p, t, α), q}, δJ p = {HJ(q, p, t, α), p},

where δV I = t(t − 1)d/dt, δV = δIII = td/dt, δIV = δII = δI = d/dt, {·, ·} is a
Poisson bracket defined by

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
,

and the Hamiltonian HJ = HJ(q, p, t, α) is of the form

HV I(q, p, t, α) = q(q − 1)(q − t)p2 − [(α0 − 1)q(q − 1) + α4(q − 1)(q − t)
+α3q(q − t)]p + α2(α1 + α2)(q − t)

(α0 + α1 + 2α2 + α3 + α4 = 1),
HV (q, p, t, α) = q(q − 1)p(p + t)− (α1 + α3)qp + α1p + α2tq

(α0 + α1 + α2 + α3 = 1),
HIV (q, p, t, α) = qp(2p− q − 2t)− 2α1p− α2q
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(α0 + α1 + α2 = 1),
HIII(q, p, t, α) = q2p(p− 1) + q[(α0 + α2)p− α0] + tp

(α0 + 2α1 + α2 = 1),

HII(q, p, t, α) =
1
2
p2 − (q2 +

t

2
)p− α1q

(α0 + α1 = 1),

HI(q, p, t) =
1
2
p2 − 2q3 − tq.

Notice that the Hamiltonian for J = IV is slightly different from that in [4]
but it is of the same form as in [1] and [9], becuase we use the well known
degenerations in this paper.

The Bäcklund transformation group W = WJ of Painlevé system PJ (J 6= I)
consists of birational symplectic transformations each of which preserves the
form of the Hamiltonian HJ but changes the parameters α = (α0, ...) as an ele-
ment of an affine Weyl group. In other words, the elements of WJ which is a lift
of an affine Weyl group are Poisson bracket preserving differential isomorphisms
of a differential field of functions of q, p, α equipped with a derivation defined by
the system PJ and δJ αi = 0, i = 0, 1, .... Here differential isomorphism means
algebraic isomorphism commuting with the derivation. The group is generated
by a finite set of generators s0, s1, ... which correspond to the simple roots of
the affine Lie algegra([5],[8]).

On the other hand, we know degenerations of Painlevé systems as the fol-
lowing diagram([1],[2],[8],[9]):

PIV

↗ ↘
PV I −→ PV PII −→ PI .

↘ ↗
PIII

For every PJ → PK in the diagram, there is a change of parameters and variables

αi = αi(A, ε) (i = 0, 1, ...),
t = t(ε, T ), q = q(A, ε, T,Q, P ), p = p(A, ε, T, Q, P ),

between α = (α0, α1, ...), t, q, p and A = (A0, A1, ...), ε, T, Q, P . For example, in
the case of PV I → PV ,

α0 = ε−1, α1 = A3, α2 = A2, α3 = A0 −A2 − ε−1, α4 = A1,

t = 1 + εT, (q − 1)(Q− 1) = 1, (q − 1)p + (Q− 1)P = −A2.
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Since the change of variables is symplectic, namely

{P, Q} = 1, {Q,Q} = {P, P} = 0,

the system PJ is also written in the new variables T, Q, P and parameters A, ε
as a Hamiltonian system denoted by PJ→K . The system PJ→K tends to the
system PK as ε → 0 and then the process ε → 0 in the change of parameters
and variables is called a degeneration or confluence process from PJ to PK .

In this paper, we observe how the degeneration process from PJ to PK

works on the Bäcklund transformation group WJ . The change of parameters
and variables lifts the group WJ to a group denoted again by WJ each element
of which is a differential isomorphism of a differential field of functions of A =
(A0, A1, ...), ε, T, Q, P . We see that an element of the new WJ does not converge
as ε → 0, in general. However we can verify the following theorem, which is the
main assertion of this paper.

THEOREM. For every degeneration process PJ → PK except for J =
II, K = I in Painlevé systems, we can choose a subgroup WJ→K of the Bäcklund
transformation group WJ so that WJ→K converges to WK as ε → 0.

The subgroup WJ→K of WJ is taken as a group generated by reflections of
A0, A1, ..., since the new parameters A0, A1, ... should be the simple roots of an
affine Weyl algebra for the system PK .

Here we notice that the same process for PII → PI can be followed, however
we see that each generator of WII→I converges to the identity as ε → 0. The fact
seems to suggest that the first Painlevé system PI has no nontrivial Bäcklund
transformations.

Since each WJ is a lift of an affine Weyl group corresponding to an affine
Lie algebra (see next section), it is convenient to express the above theorem by
the following diagram:

W (A(1)
2 )

↗ ↘
W (D(1)

4 ) −→ W (A(1)
3 ) W (A(1)

1 ).
↘ ↗

W (C(1)
2 )

In Section 2, we review the Bäcklund transformation groups of the Painlevé
systems PJ (J 6= I). The following sections are devoted to the proof of the
above theorem in all cases of degenerations. In these sections, we also see how
WJ→K acts on the system PJ→K .

2 Review of Bäcklund transformation groups

In this section, we give explicit forms of the generators si of the Bäcklund
transformation group W of each Painlevé system. Each list consists of the
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type of affine Weyl group, Dynkin diagram, the fundamental relations of the
generators of the group W , and the explicit forms of the generators, where the
forms of si(t) are omitted in the case of si(t) = t for all i. The lists are the same
as those in [4] except the case of J = IV .

2.1 The case of J = V I

D
(1)
4 : c

c c c
cα0

α1

α2

α4

α3H ©© H (α0 + α1 + 2α2 + α3 + α4 = 1)

W (D(1)
4 ) = 〈s0, s1, s2, s3, s4〉 : s2

i = s2
2 = 1, (sisj)2 = 1, (sis2)3 = 1.

α0 α1 α2 α3 α4 q p
s0 −α0 α1 α2 + α0 α3 α4 q p− α0

q−t

s1 α0 −α1 α2 + α1 α3 α4 q p
s2 α0 + α2 α1 + α2 −α2 α3 + α2 α4 + α2 q + α2

p p

s3 α0 α1 α2 + α3 −α3 α4 q p− α3
q−1

s4 α0 α1 α2 + α4 α3 −α4 q p− α4
q

The last list should be read as

s0(α0) = −α0, s0(α1) = α1, s0(α2) = α2 + α0, s0(α3) = α3, s0(α4) = α4,

s0(q) = q, s0(p) = p− α0

q − t

and so on.

2.2 The case of J = V

A
(1)
3 : c

c
c cα1

α0
α3

α2

©© HH (α0 + α1 + α2 + α3 = 1)

W (A(1)
3 ) = 〈s0, s1, s2, s3〉 : s2

i = 1, (sisi+2)2 = 1, (sisi+1)3 = 1.

α0 α1 α2 α3 q p
s0 −α0 α1 + α0 α2 α3 + α0 q + α0

p+t p

s1 α0 + α1 −α1 α2 + α1 α3 q p− α1
q

s2 α0 α1 + α2 −α2 α3 + α2 q + α2
p p

s3 α0 + α3 α1 α2 + α3 −α3 q p− α3
q−1
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2.3 The case of J = IV

A
(1)
2 : c

c
cα1

α0
α2©© HH (α0 + α1 + α2 = 1)

W (A(1)
2 ) = 〈s0, s1, s2〉 : s2

0 = s2
1 = s2

2 = 1, (s0s1)3 = (s1s2)3 = (s2s0)3 = 1.

α0 α1 α2 q p

s0 −α0 α1 + α0 α2 + α0 q + 2α0
2p−q−2t p + α0

2p−q−2t

s1 α0 + α1 −α1 α2 + α1 q p− α1
q

s2 α0 + α2 α1 + α2 −α2 q + α2
p p

2.4 The case of J = III

C
(1)
2 : c⇒ c⇐ cα0 α1 α2

(α0 + 2α1 + α2 = 1)

W (C(1)
2 ) = 〈s0, s1, s2〉 : s2

0 = s2
1 = s2

2 = 1, (s0s1)4 = (s1s2)4 = 1.

α0 α1 α2 t q p
s0 −α0 α1 + α0 α2 t q + α0

p p

s1 α0 + 2α1 −α1 α2 + 2α1 −t q p− 2α1
q + t

q2

s2 α0 α1 + α2 −α2 t q + α2
p−1 p

2.5 The case of J = II

A
(1)
1 : c⇔ cα0 α1

(α0 + α1 = 1)

W (A(1)
1 ) = 〈s0, s1〉 : s2

0 = s2
1 = 1.

α0 α1 q p

s0 −α0 α1 + 2α0 q + α0
p−2q2−t p + 4α0q

p−2q2−t + 2α2
0

(p−2q2−t)2

s1 α0 + 2α1 −α1 q + α1
p p
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3 Degeneration from WV I to WV

In this case, the degeneration process is given by

α0 = ε−1, α1 = A3, α2 = A2, α3 = A0 −A2 − ε−1, α4 = A1,(3.1)
t = 1 + εT, (q − 1)(Q− 1) = 1, (q − 1)p + (Q− 1)P = −A2.(3.2)

Notice that A0 + A1 + A2 + A3 = α0 + α1 + 2α2 + α3 + α4 = 1 and the change
of variables from (q, p) to (Q, P ) is symplectic.

Each Bäcklund transformation in WV I given in 2.1 is an differential iso-
morphism of the differential field K = C(α, t, q, p) of rational functions of
α = (α0, α1, ..., α4), t, q, p equipped with a derivation δV I defined by

δV I q = {HV I , q}, δV I p = {HV I , p},
δV I t = t(t− 1), δV I αi = 0, i = 0, 1, ..., 4.

Since the change of parameters and variables (3.1),(3.2) is birational, we
can obtain the action of WV I on the differential field K ′ := C(A, ε, T, Q, P ) of
rational functions of A = (A0, A1, A2, A3), ε, T, Q, P .

Let us see the actions of the generators si, i = 0, 1, 2, 3, 4 on the parameters
Ai, i = 0, 1, 2, 3 and ε where

A0 = α0 + α2 + α3, A1 = α4, A2 = α2, A3 = α1 ε =
1
α0

.

For example, the action of s0 is obtained as

s0(A0) = s0(α0 + α2 + α3) = −α0 + (α2 + α0) + α3 = α2 + α3

= A0 − ε−1, s0(A1) = s0(α4) = α4 = A1,

s0(A2) = s0(α2) = α2 + α0 = A2 + ε−1, s0(A3) = s0(α1) = α1 = A3,

s0(ε) = s0(1/α0) = −1/α0 = −ε.

Similarly we have

s1(A0) = A0 + A3, s1(A1) = A1, s1(A2) = A2 + A3, s1(A3) = −A3, s1(ε) = ε

s2(A0) = A0, s2(A1) = A1 + A2, s2(A2) = −A2, s2(A3) = A3 + A2,

s2(ε) =
ε

1 + A2ε
,

s3(A0) = A2 + ε−1, s3(A1) = A1, s3(A2) = A0 − ε−1, s3(A3) = A3, s3(ε) = ε,

s4(A0) = A0 + A1, s4(A1) = −A1, s4(A2) = A2 + A1, s4(A3) = A3, s3(ε) = ε.

We remark that s3(A0) and s3(A2) diverge as ε → 0.
Obersving these relations, we take a subgroup WV I→V of WV I genetated by

S0, S1, S2, S3 defined by

S0 := s0s2s3s2s0 = s3s2s0s2s3, S1 := s4, S2 := s2, S3 := s1.(3.3)
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We can easily check

S0(A0) = −A0, S0(A1) = A1 + A0, S0(A2) = A2,(3.4)

S0(A3) = A3 + A0, S0(ε) =
ε

1−A2ε
,

S1(A0) = A0 + A1, S1(A1) = −A1, S1(A2) = A2 + A1,(3.5)
S1(A3) = A3, S1(ε) = ε,

S2(A0) = A0, S2(A1) = A1 + A2, S2(A2) = −A2,(3.6)

S2(A3) = A3 + A2, S2(ε) =
ε

1 + A2ε
,

S3(A0) = A0 + A3, S3(A1) = A1, S3(A2) = A2 + A3,(3.7)
S3(A3) = −A3, S3(ε) = ε,

and the generators satisfy the fundamental relations given in 2.2. In short, the
group WV I→V =< S0, S1, S2, S3 > can be considered to be an affine Weyl group
of the affine Lie algebra of type A

(1)
3 with simple roots A0, A1, A2, A3.

Now we investigate how the generators of WV I→V act on T, Q and P . We
can verify

S0(T ) = T (1−A0ε), S0(Q) = Q +
A0(1−Q(Q− 1)Pε)
P + T − T (Q− 1)Pε

,(3.8)

S0(P ) = P
(
1 +

A0Tε

P + T − T (A0 + QP )ε

)
,

S1(T ) = T, S1(Q) = Q, S1(P ) = P − A1

Q
,(3.9)

S2(T ) = T (1 + A2ε), S2(Q) = Q +
A2

P
, S2(P ) = P,(3.10)

S3(T ) = T, S3(Q) = Q, S3(P ) = P − A3

Q− 1
.(3.11)

By comparing (3.4) – (3.11) with the last list in 2.2, we see that our theorem
holds for WV I → WV .

We notice that the system PV I is written in the new variables as

PV I→V : δV Q = {HV I→V , Q}, δV P = {HV I→V , P}

where δV = T∂/∂T, HV I→V := HV I/(1 + εT ), HV I→V → HV as ε → 0.
We can verify that δV commutes with any element WV I→V , and then for any
w ∈ WV I→V

δV w(Q) = {w(HV I→V ), w(Q)}, δV w(P ) = {w(HV I→V ), w(P )}.
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4 Degeneration from WV to WIV

The degeneration in the case is given by

α0 = A0 +
1
2
ε−2, α1 = A1, α2 = A2, α3 = −1

2
ε−2,(4.1)

t =
1
2
ε−2(1 + 2εT ), q = − εQ

1− εQ
,(4.2)

p = −ε−1(1− εQ)[P − ε(A2 + QP )].

Notice that A0 +A1 +A2 = α0 +α1 +α2 +α3 = 1 and the transformation from
(q, p) to (Q, P ) is symplectic, however the change of parameters (4.1) is not one
to one differently from the case of PV I → PV .

Since the generators of WV→IV should be reflections of A0 = α0 + α3, A1 =
α1, A2 = α2, we choose them as

S0 := s3s0s3 = s0s3s0, S1 := s1, S2 := s2(4.3)

and set WV→V I =< S0, S1, S2 >. Then we immediately have

S0(A0) = −A0, S0(A1) = A1 + A0, S0(A2) = A2 + A0,(4.4)
S1(A0) = A0 + A1, S1(A1) = −A1, S1(A2) = A2 + A1,(4.5)
S2(A0) = A0 + A2, S2(A1) = A1 + A2, S2(A2) = −A2.(4.6)

However, we see that Si(ε) have ambiguities of signature. For example, since

S2(ε)2 = s2(ε2) = s2((−1/2)/α3) = −1
2

1
α3 + α2

=
ε2

1− 2A2ε2
,

we can choose any one of the two branches as S2(ε). Among such possibilities,
we take a choice as

S0(ε) = ε(1 + 2A0ε
2)−1/2, S1(ε) = ε, S2(ε) = ε(1− 2A2ε

2)−1/2(4.7)

where (1 + 2A0ε
2)1/2 = 1 and (1 − 2A2ε

2)1/2 = 1 at A0ε
2 = 0 and A2ε

2 = 0
respectively, or considering in the category of formal power series, we make a
convention that (1 + 2A0ε

2)1/2 and (1 − 2A2ε
2)1/2 are formal power series of

A0ε
2 and A2ε

2 with constant terms 1 according to

(1 + x)c ∼ 1 +
∑

n≥1

(
c

n

)
xn.

We notice that the generators acting on parameters A0, A1, A2, ε satisfy the
fundamental relations in 2.3.

Now we observe the actions of Si, i = 0, 1, 2 on the variables T, Q, P . By
means of (4.2),(4.7) and

S0(t) = s3s0s3(t) = t, S1(t) = s1(t) = t, S2(t) = s2(t) = t,
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we can easily check

S0(T ) = (T −A0ε)(1 + 2A0ε
2)−1/2, S1(T ) = T,(4.8)

S2(T ) = (T + A2ε)(1− 2A2ε
2)−1/2.(4.9)

By (4.1),(4.2),(4.7) and the actions of s1, s2 on q, p, we can easily verify

S1(Q) = Q, S1(P ) = P − A1

Q
(4.10)

S2(Q) = Q +
A2

P
, S2(P ) = P.(4.11)

The forms of the actions S0 = s3s0s3 on Q and P are complicated, but we can
see that

S0(Q) → Q +
2A0

2P −Q− 2T
, S0(P ) → P +

A0

2P −Q− 2T
(4.12)

as ε → 0 for arbitrarily fixed A = (A0, A1, A2), T,Q and P with some generic
conditions such as 2P − Q − 2T 6= 0. Here we have to note that, although
S0(Q), S0(P ) contain formal power series of A, ε, they are analytic if ε is suffi-
ciently small for any fixed A, T, Q, P .

By means of the above study, we define a differential field K ′ on which
WV→IV =< S0, S1, S2 > acts as the field of rational functions of T,Q, P whose
coefficients are formal power series of A0, A1, A2, ε. Then the action of any
w ∈ WV→IV is defined as an isomorphism from K ′ to itself.

The equations or property from (4.4) to (4.12) and the list in 2.3 show the
theorem for WV → WIV .

Since δV = td/dt = (1 + 2εT )(2ε)−1d/dT = (1 + 2εT )(2ε)−1δIV and the
transformation from (q, p) to (Q,P ) is symplectic, the system PV is expressed
as

PV→IV : δIV Q = {HV→IV , Q}, δIV P = {HV→IV , P}

in the new variables, where HV→IV = 2ε(1 + 2εT )−1HV , and HV→IV → HIV

as ε → 0. However δIV does not commutes with the elements of WV→IV and
then we have to notice that the transform of PV→IV by w ∈ WV→IV is

δIV w(Q) =
{ 2ε

1 + 2εT
w

(1 + 2εT

2ε

)
w(HV→IV ), w(Q)

}
,

δIV w(P ) =
{ 2ε

1 + 2εT
w

(1 + 2εT

2ε

)
w(HV→IV ), w(P )

}
,

which is verified by the fact that δV commutes with every w ∈ WV→IV .

9



5 Degeneration from WV to WIII

The degeneration in this case is

α0 = A2, α1 = ε−1, α2 = A0, α3 = 2A1 − ε−1,(5.1)

t = −εT, q = 1 +
Q

εT
, p = εTP.(5.2)

We see that A0 +2A1 +A2 = α0 +α1 +α2 +α3 = 1 and the change of variables
from (q, p) to (Q, P ) is symplectic. As the case of PV I → PV , the transformation
given by (5.1) and (5.2) is birational, and we can easily obtain the actions of
si, i = 0, 1, 2, 3 on the differential field K ′ = C(A0, A1, A2, ε, T, Q, P ).

Choose Si, i = 0, 1, 2 as

S0 := s2, S1 := s3s1 = s1s3, S2 := s0(5.3)

which are reflections of A0 = α2, A1 = (α1 + α3)/2, A2 = α0 respectively.
It is easy to see that

S0(A0) = −A0, S0(A1) = A1 + A0, S0(A2) = A2, S0(ε) =
ε

1 + A0ε
(5.4)

S1(A0) = A0 + 2A1, S1(A1) = −A1 S1(A2) = A2 + 2A1, S1(ε) = −ε,(5.5)

S2(A0) = A0, S2(A1) = A1 + A2, S2(A2) = −A2, S2(ε) =
ε

1 + A2ε
(5.6)

and

S0(T ) = T (1 + A0ε), S0(Q) = Q +
A0

P
, S0(P ) = P,(5.7)

S1(T ) = −T, S1(Q) = Q, S1(P ) = P − 2A1

Q
+

T

Q2
+ O(ε),(5.8)

S2(T ) = T (1 + A2ε), S2(Q) = Q +
A2

P − 1
, S2(P ) = P(5.9)

where O(ε) is a rational function of Ai, i = 0, 1, 2, ε, T, Q, P with a factor ε.
The proof of the theorem for WV → WIII has thus been completed.

We see that δV = td/dt = Td/dT = δIII and the system PV is written in
the new variables by

PV→III : δIIIQ = {HV→III , Q}, δIIIP = {HV→III , P}

where HV→III = HV +QP , which converges to HIII as ε → 0. Since δIII com-
mutes with any element of WV→III , the transform of PV→III by w ∈ WV→III

is

δIIIw(Q) = {w(HV→III), w(Q)}, δIIIw(P ) = {w(HV→III), w(P )}.
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6 Degeneration from WIV to WII

The degeneration is

α0 = A0 − 1
4
ε−6, α1 =

1
4
ε−6, α2 = A1,(6.1)

t = − 1√
2

ε−3(1− ε4T ), q =
1√
2

ε−3(1 + 2ε2Q), p =
1√
2

εP.(6.2)

Then A0 + A1 = α0 + α1 + α2 = 1 and the change of variables from (q, p) to
(Q,P ) is symplectic. Since the change of parameters (6.1) is not one to one,
we consider the degeneration process by introducing formal power series of the
new parameters A = (A0, A1), ε.

We choose S0 and S1 as

S0 := s0s1s0 = s1s0s1, S1 := s2(6.3)

and put WIV→II =< S0, S1 >. Note that S0, S1 are reflections of A0 = α0 +
α1, A1 = α2 respectively.

Then we can obtain

S0(A0) = −A0, S0(A1) = A1 + 2A0, S0(ε) = ε(1− 4A0ε
6)−1/6,(6.4)

S1(A0) = A0 + 2A1, S1(A1) = −A1, S1(ε) = ε(1 + 4A1ε
6)−1/6.(6.5)

Here, we make the same convention as in Section 4 that (1 − 4A0ε
6)−1/6 and

(1 + 4A1ε
6)−1/6 respectively mean formal power series of A0ε

6 and A1ε
6 with

1 as constant terms.
Let K ′ be a field of rational functions of T,Q, P whose coefficients are formal

power series of A = (A0, A1), ε. Then we can verify

S0(T ) → T, S0(Q) → Q +
A0

P − 2Q2 − T
,(6.6)

S0(P ) → P +
4A0Q

P − 2Q2 − T
+

2A2
0

(P − 2Q2 − T )2
,

S1(T ) → T, S1(Q) → Q +
A1

P
,(6.7)

S1(P ) → P

as ε → 0. Concerning the convergence, remind the note in Section 4. Thus we
have proved the theorem for WIV → WII .

Since δIV = (
√

2/ε)δII , the system PIV is written in the new variables as

PIV→II : δIIQ = {HIV→II , Q}, δIIP = {HIV→II , P}
where HIV→II = (ε/

√
2)HIV and HIV→II → HII as ε → 0. Notice that δII

does not commute with elements of WIV→II , and the transform of PIV→II by
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w ∈ WIV→II is

δIIw(Q) = {εw(1/ε)w(HIV→II), w(Q)},
δIIw(P ) = {εw(1/ε)w(HIV→II), w(P )}.

7 Degeneration from WIII to WII

In this case, the degeneration of parameters is given by

α0 = A1, α1 =
1
4
ε−3, α2 = A0 − 1

2
ε−3(7.1)

and that of variables is given by the composition of the following two transfor-
mations:

t = −τ2, q = −τ

x
, p =

x

τ
(A1 + xy),(7.2)

τ =
1 + ε2T

4ε3
, x = 1 + 2εQ, y =

P

2ε
.(7.3)

Note that A0 + A1 = α0 + 2α1 + α2 = 1 and the transformations from (q, p) to
(x, y) and from (x, y) to (Q,P ) are symplectic.

Let us choose

S0 := (s2s1)2 = (s1s2)2, S1 := s0(7.4)

as generators of WIII→II . Then we see that

S0(A0) = −A0, S0(A1) = A1 + 2A0, S0(ε) = −ε,(7.5)
S1(A0) = A0 + 2A1, S1(A1) = −A1, S1(ε) = ε(1 + 4A1ε

3)−1/3.(7.6)

In the last equation of (7.5), we have chosen −1 as a branch of (−1)1/3 in order
that S2

0(ε) = ε. As in Sections 4,6, we make a convention that (1 + 4A1ε
3)−1/3

is a formal power series of A1ε
3 with 1 as a constant term.

By careful calculation, we can verify

S0(T ) = T, S0(Q) → Q +
A0

P − 2Q2 − T
(7.7)

S0(P ) → P +
4A0Q

P − 2Q2 − T
+

2A2
0

(P − 2Q2 − T )2
,

S1(T ) → T, S1(Q) → Q +
A1

P
, S1(P ) → P(7.8)

as ε → 0 for arbitrarily fixed A0, A1, T, Q, T . Thus we have proved the theorem
for WIII → WII .
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We see that δIII = (1 + ε2T )(2ε2)−1δII and the system PIII is written in
the new variables as

PIII→II : δIIQ = {HIII→II , Q}, δIIP = {HIII→II , P}

where HIII→II = (2ε2)(1 + ε2T )−1HIII and HIII→II → HII as ε → 0. We
notice that δII does not commute with elements of WIII→II , and the transform
of PIV→II by w ∈ WIII→II is

δIIw(Q) =
{ 2ε2

1 + ε2T
w

(1 + ε2T

2ε2

)
w(HIII→II), w(Q)

}
,

δIV w(P ) =
{ 2ε2

1 + ε2T
w

(1 + ε2T

2ε2

)
w(HIII→II), w(P )

}
.
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