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§ 0. Introduction.

This is the second part of the series of our papers. In the preceding
paper([11]), we studied a Hamiltonian structure of the sixth Painlevé sys-
tem (HV I) equivalent to the sixth Painlevé equation PV I . In this paper, we
continue the study for Painlevé systems (HJ) or Painlevé equations PJ for
J = V, IV, III, II.

Painlevé equations PJ , J = V, IV, III, II are the equations given by
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PII :
d2x

dt2
=2x3 + tx + α,

where x and t are complex variables, α, β, γ, and δ are complex constants([4]).
It is known that each PJ is equivalent to a Hamiltonian system (HJ) : dx/dt =
∂HJ/∂y, dy/dt = −∂HJ/dx, where

HV (x, y, t) =
1
t
[x(x− 1)2y2 − {κ0(x− 1)2 + κtx(x− 1)− ηtx}y + κ(x− 1)]

(κ :=
1
4
{(κ0 + κt)2 − κ2

∞}),
HIV (x, y, t) =2xy2 − {x2 + 2tx + 2κ0}y + κ∞x,

HIII(x, y, t) =
1
t
[2x2y2 − {2η∞tx2 + (2κ0 + 1)x− 2η0t}y + η∞(κ0 + κ∞)tx],

HII(x, y, t) =
1
2
y2 − (x2 +

t

2
)y − (α +

1
2
)x.

Here the relations between the constants in the equations PJ and those in the
Hamiltonians are given by

α = κ∞2/2, β = −κ0
2/2, γ = −η(1 + κt), δ = −η2/2
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for J = V ,

α = −κ0 + 2κ∞ + 1, β = −2κ0
2

for J = IV , and

α = −4η∞κ∞, β = 4η0(κ0 + 1), γ = 4η∞2, δ = −4η0
2

for J = III([4],[8]). The equivalence of PJ and (HJ ) means that if we elim-
inate the variable y in (HJ) then we obtain PJ . We notice that each Hamil-
tonian HJ is a polynomial of x and y of which the coefficients are rational
functions of t holomorphic in BJ where

BV = BIII = C− {0}, BIV = BII = C.

The most important property of (HJ) (or PJ) is the so called the Painlevé
Property which is stated as: if (x(t), y(t)) is a solution of (HJ) determined by
an arbitrary initial condition x(t0) = x0 ∈ C, y(t0) = y0 ∈ C with t0 ∈ BJ

then both x(t) and y(t) can be meromorphically continued along any curve in
BJ with a starting point t0.

Let QJ = (C2 × BJ , πJ , BJ) be a trivial fiber space over BJ . Then
the system (HJ) determines a complex 1-dimensional nonsingular foliation
such that every leaf passing through a point in C2 × t(t ∈ BJ) is transversal
to the fiber C2 × t. But this foliation is not uniform, namely, for a point
(x0, y0, t0) ∈ C2 × BJ and a curve l in BJ with a starting point t0, l may
not be lifted to a leaf in C2 × BJ through the point (x0, y0, t0) because the
solution (x(t), y(t)) of (HJ) with (x(t0), y(t0)) = (x0, y0) may have poles on l.

In the paper [7], K. Okamoto constructed a fiber space PJ = (EJ , πJ , BJ)
such that
(i) PJ contains QJ as a fiber subspace,
(ii) the system (HJ) of differential equations in C2 × BJ is holomorphically

extended to a system in EJ and it determines a uniform foliation on PJ .
(iii) every leaf in EJ intersects with the total space of QJ .

The above (iii) states the minimality of PJ . K. Okamoto named each fiber
EJ(t) = πJ

−1(t) a space of initial conditions of (HJ), since there exists a
bijection from it to the set of all solutions of (HJ). We can imagine the space
EJ by virtue of the following fact: for any simply connected domain U in
BJ , πJ

−1(U) is, as a set, a disjoint union of all the extended trajectories
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determined by (HJ). Each fiber EJ (t) is constructed as follows. We first take
a compactification Σε × t (the so called Hirzeburch surface) of C2 × t where
ε is a certain constant depending on the constants in HJ . Next we make
finite number of quadric transformations to Σε × t and get EJ(t). Lastly we
obtain EJ(t) by removing some divisors which consist of vertical leaves and
inaccessible singular points. Here, a vertical leaf is a leaf contained in a fiber,
and an inaccessible singular point is a singular point of the foliation through
which no solution of (HJ) passes.

The purpose of this paper is to introduce certain local coordinate systems
of each space EJ (J = V, IV, III, II) so that (a) every fiber EJ(t) has a sym-
plectic structure and (b) in each chart of EJ , the original Hamiltonian system
(HJ) is written as a Hamiltonian system with a Hamiltonian function which
is a polynomial of the canonical coordinates. The uniqueness of holomorphic
Hamiltonian systems on each EJ(J = V, IV, III, II) will be shown in the next
paper.

In Section 1, we state our results, Theorems 1,2,3,4, and 5. In the fol-
lowing sections, Sections 2,3,4, and 5, we prove these theorems. In the case of
J = V I, we could easily obtain canonical coordinate systems by using stan-
dard coordinate systems of quadric transformations ([11]). However, in the
other cases studied in this paper, we have to make a certain device, namely,
we have to insert a change of variables as (2.9), (3.6), (4.3) or (5.5) in order
to make transition functions in a description of EJ symplectic.

§1. Main Results.

In order to state our results, we explain a definition and a property of
symplectic mapping. Let φ : x = x(X,Y, t), y = y(X, Y, t), t = t be a bi-
holomorphic mapping from a domain D in C3 3 (X,Y, t) into C3 3 (x, y, t).
We say that φ is symplectic if, for every t = t0, φt0 = φ|t=t0 is a symplectic
mapping from Dt0 = D|t=t0 to φ(Dt0), namely, if

(1.1) dy ∧ dx = dY ∧ dX,

for every fixed t. Let φ be a symplectic mapping as above. Then any Hamil-
tonian system dx/dt = ∂H/∂y, dy/dt = −∂H/∂x defined in D is transformed
to dX/dt = ∂K/∂Y, dY/dt = −∂K/∂X in φ(D) where

(1.2) dy ∧ dx− dH ∧ dt = dY ∧ dX − dK ∧ dt.
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We note that the function K = K(X, Y, t) is uniquely determined modulo
functions independent of X and Y .

Then the first assertion is stated as

THEOREM 1. The space EV for the fifth Painlevé system (HV ) is ob-
tained by glueing five copies of C2 ×BV :

V (00)×BV = C2 ×BV 3 (x, y, t) = (x(00), y(00), t),

V (0∞)×BV = C2 ×BV 3 (x(0∞), y(0∞), t),

V (1∞)×BV = C2 ×BV 3 (x(1∞), y(1∞), t),

V (∞0+)×BV = C2 ×BV 3 (x(∞0+), y(∞0+), t),

V (∞0−)×BV = C2 ×BV 3 (x(∞0−), y(∞0−), t),

via the following symplectic transformations

(1.2) x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

(1.3) x(00) = 1 + x(1∞), y(00) = − ηt

x(1∞)2
+

κt + 1
x(1∞)

+ y(1∞),

(1.4) x(00) = 1/x(∞0+), y(00) = x(∞0+)(ε(+)− x(∞0+)y(∞0+)),

(1.5) x(∞0+) = y(∞0−)(κ∞ − x(∞0−)y(∞0−)), y(∞0+) = 1/y(∞0−),

where

(1.6) BV = C− {0},

(1.7) ε(+) = (κ0 + κt + κ∞)/2,

and V (00) × BV is the original space in which the Hamiltonian function
HV (x, y, t) is defined.

THEOREM 2. The space EIV for the fourth Painlevé system (HIV ) is
obtained by glueing four copies of C2 ×BIV :

V (00)×BIV = C2 ×BIV 3 (x, y, t) = (x(00), y(00), t),

V (0∞)×BIV = C2 ×BIV 3 (x(0∞), y(0∞), t),

V (∞0)×BIV = C2 ×BIV 3 (x(∞0), y(∞0), t),

V (∞∞)×BIV = C2 ×BIV 3 (x(∞∞), y(∞∞), t),

4



via the following symplectic transformations

(1.8) x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

(1.9) x(00) = 1/x(∞0), y(00) = x(∞0)(κ∞ − x(∞0)y(∞0)),

(1.10)
x(∞0) = x(∞∞),

y(∞0) = − 1/2
x(∞∞)3

− t

x(∞∞)2
+

2κ∞ − κ0 + 1
x(∞∞)

+ y(∞∞),

where

(1.11) BIV = C,

and V (00) × BIV is the original space in which the Hamiltonian function
HIV (x, y, t) is defined.

THEOREM 3. The space EIII for the third Painlevé system (HIII) is
obtained by glueing four copies of C2 ×BIII :

V (00)×BIII = C2 ×BIII 3 (x, y, t) = (x(00), y(00), t),

V (0∞)×BIII = C2 ×BIII 3 (x(0∞), y(0∞), t),

V (∞0)×BIII = C2 ×BIII 3 (x(∞0), y(∞0), t),

V (∞η∞t)×BIII = C2 ×BIII 3 (x(∞η∞t), y(∞η∞t), t),

via the following symplectic transformations

(1.12) x(00) = x(0∞), y(00) = − η0t

x(0∞)2
+

κ0 + 1
x(0∞)

+ y(0∞),

(1.13) x(00) = 1/x(∞0), y(00) = x(∞0)(ε− x(∞0)y(∞0)),

(1.14) x(∞0) = x(∞η∞t), y(∞0) = − η∞t

x(∞η∞t)2
+

κ∞
x(∞η∞t)

+y(∞η∞t),

where

(1.15) BIII = C− {0},
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(1.16) ε = (κ0 + κ∞)/2,

and V (00) × BIII is the original space in which the Hamiltonian function
HIII(x, y, t) is defined.

THEOREM 4. The space EII for the second Painlevé system (HII) is
obtained by glueing three copies of C2 ×BII :

V (00)×BII = C2 ×BII 3 (x, y, t) = (x(00), y(00), t),

V (∞0)×BII = C2 ×BII 3 (x(∞0), y(∞0), t),

V (∞∞)×BII = C2 ×BII 3 (x(∞∞), y(∞∞), t),

via the following symplectic transformations

(1.17) x(00) = 1/x(∞0), y(00) = x(∞0)(ε− x(∞0)y(∞0)),

(1.18)
x(∞0) = x(∞∞),

y(∞0) = − 2
x(∞∞)4

− t

x(∞∞)2
− 2α

x(∞∞)
+ y(∞∞),

where

(1.19) BII = C,

(1.20) ε = −α− 1
2
,

and V (00) × BII is the original space in which the Hamiltonian function
HII(x, y, t) is defined.

The following second assertion is verified by virtue of (1.2).

THEOREM 5. For every J = V, IV, III, II, the Hamiltonian function
HJ(∗) = HJ(∗; x(∗), y(∗), t) in every chart V (∗)×BJ is a polynomial of x(∗)
and y(∗) of which the coefficients are rational functions of t holomorphic in
BJ .

§2. Proof of THEOREM 1.

In the following sections, we prove THEOREMs from 1 to 4 by review-
ing the construction of each fiber EJ(t) (t ∈ BJ , J = V, ..., II) ([7]) and by
suitably choosing local canonical coordinate systems.
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For every J , we begin our study with a minimal compactification Σε of
C2 obtained by glueing four Ui = C2 3 (xi, yi), i = 0, 1, 2, 3, via the following
identifications:

(2.1) x0 = x1, y0 = 1/y1,

(2.2) x0 = 1/x2, y0 = x2(ε− x2y2),

(2.3) x2 = x3, y2 = 1/y3,

where ε is a complex constant. This manifold is known as Hirzeburch surface,
which is isomorphic to P1 × P1 if ε 6= 0 and to a compactification of the
cotangent bundle over P1 if ε = 0. We consider each Ui or Ui×BJ as a chart
of Σε or Σε × BJ respectively. Note that y1 = 0 in U1 corresponds to y3 = 0
in U3 because

x1 = 1/x3, y1 = y3/[x3(εy3 − x3)].

In the present case where J = V , we take the constant ε as ε = ε(+)
given by (1.7):

ε = (κ0 + κt + κ∞)/2.

2.1. We extend the system (HV ) defined in U0 × BV 3 (x0, y0, t) =
(x, y, t) to a Pfaffian system defined in the whole space Σε × BV and we
observe the foliation of Σε × BV defined by the Pfaffian system. We see
that, in Ui × BV , i = 0, 2, the foliation has no singular points and every leaf
is transversal with fibers. However, in Ui × BV , i = 1, 3, the foliation has
both singular points and vertical leaves. Recall that a vertical leaf is a leaf
contained in a fiber. Set

D(0)(t) = (U1(y1 = 0)× t) ∪ (U3(y3 = 0)× t) ∼= P1,

a(0)
ν (t) = {(x1, y1, t) = (ν, 0, t)}, ν = 0, 1,

a(0)
ν (t) = {(x3, y3, t) = (0, 0, t)}, ν = ∞,

where Ui(yi = 0) denotes the set {(xi, yi, t) | yi = 0}, then D(0)(t)−∪ν{a(0)
ν (t)}

is a vertical leaf and the three points a
(0)
ν (t), ν = 0, 1,∞ are the singular points

of the foliation, which is verified, for example, by

dy1

dx
=

[3x2 − 2x + 1 + O(y1)]y1

2x(x− 1)2 + O(y1)
,

dt

dx
=

ty1

2x(x− 1)2 + O(y1)
,
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where x = x1, O(y1) denotes a polynomial of x, y1, t with a factor y1.

2.2. Quadric transformations with centers a
(0)
ν (t) and a

(1)
ν (t) for

arbitrarily fixed t ∈ BV and ν = 0,∞. In order to completely separate
the leaves passing through the point a

(0)
ν (t), we make quadric transformations

two times successively. We denote the quadric transformation with center a

by Qa.
2.2.1. The first quadric transformation with center a

(0)
ν (t). Let

(z(1)
ν , w

(1)
ν ) ∈ C2 and (Z(1)

ν ,W
(1)
ν ) ∈ C2 be coordinate systems of V

(1)
0 (t) =

Q
a
(0)
0 (t)

(U1× t) for ν = 0 or of V
(1)
∞ (t) = Q

a
(0)
∞ (t)

(U3× t) for ν = ∞ defined by

(2.4)
x1 = z

(1)
0 , y1 = z

(1)
0 w

(1)
0 ,

x1 = Z
(1)
0 W

(1)
0 , y1 = W

(1)
0 ,

for ν = 0, and

(2.5)
x3 = z(1)

∞ , y3 = z(1)
∞ w(1)

∞ ,

x3 = Z(1)
∞ W (1)

∞ , y3 = W (1)
∞ ,

for ν = ∞, then the exceptional curve is given by

D(1)
ν (t) : = Q

a
(0)
ν (t)

(a(0)
ν (t))

= {(z(1)
ν , w(1)

ν , t) | z(1)
ν = 0} ∪ {(Z(1)

ν ,W (1)
ν , t) | W (1)

ν = 0},

and our system is written as

dW

dZ
=

(1 + O(W ))W
Z − κν + O(W )

,
dt

dZ
=

tW

Z − κν + O(W )

with (Z, W ) = (Z(1)
ν ,W

(1)
ν ), in a neighborhood of D

(1)
ν (t) = {W = 0}, or

w
dz

dt
=

1
t
[2 + O(z) + O(w)], z

dw

dt
=

1
t
[−1 + O(z) + O(w)]

with (z, w) = (z(1)
ν , w

(1)
ν ), in a neighborhood of (z, w, t) = (0, 0, t). Therefore,

we see that

a(1)
ν (t) = {(Z(1)

ν ,W (1)
ν , t) = (κν , 0, t)} ∈ D(1)

ν (t),

b(1)
ν (t) = {(z(1)

ν , w(1)
ν , t) = (0, 0, t)} ∈ D(1)

ν (t) ∩D(0)(t),

D(0)(t) also denoting the proper image of itself by the quadric transformation,
are singular points of the foliation and D

(1)
ν (t)− {a(1)

ν (t), b(1)
ν (t)} is a vertical
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leaf. We see moreover that the point b
(1)
ν (t) is a singular point through which

no solution of (HV ) passes by virtue of Painlevé property and the above
form of the system near (z, w, t) = (0, 0, t). We call such a singular point an
inaccessible singular point in this paper.

2.2.2. The second quadric transformation with center a
(1)
ν (t). Let

(z(2)
ν , w

(2)
ν ) ∈ C2 and (Z(2)

ν ,W
(2)
ν ) ∈ C2 be coordinate systems of V

(2)
0 (t) =

Q
a
(1)
0 (t)

(V (1)
0 (t)) for ν = 0 or of V

(2)
∞ (t) = Q

a
(1)
∞ (t)

(V (1)
∞ (t)) for ν = ∞ defined

by

(2.6)
Z(1)

ν = κν + z(2)
ν , W (1)

ν = z(2)
ν w(2)

ν .

Z(1)
ν = κν + Z(2)

ν W (2)
ν , W (1)

ν = W (2)
ν ,

then
D(2)

ν (t) := Q
a
(1)
ν (t)

(a(1)
ν (t)) = {z(2)

ν = 0} ∪ {W (2)
ν = 0}.

We can verify that the Pfaffian system is written as

tdZ(2)
ν − Pν(Z(2)

ν ,W (2)
ν , t)dt = 0,

tdW (2)
ν −Qν(Z(2)

ν ,W (2)
ν , t)dt = 0,

in the coordinates Z
(2)
ν , W

(2)
ν , and t where Pν , Qν are certain polynomials

of Z
(2)
ν ,W

(2)
ν , and t. This means that the foliation has no singular points in

(Z(2)
ν ,W

(2)
ν , t)-space C2 × BV and every leaf in the space is transversal with

fibers. On the other hand, the point (z(2)
ν , w

(2)
ν , t) = (0, 0, t) is not a singular

point of the foliation and the leaf which passes the point is the vertical leaf
D

(1)
ν (t)− {b(1)

ν (t)}, because our system is written as

dw

dz
=

w

1 + O(w)
,

dt

dz
=

tw

1 + O(w)
,

with (z, w) = (z(2)
ν , w

(2)
ν ), in a neighborhood of (z, w, t) = (0, 0, t).

2.3. Quadric transformations with centers a
(0)
1 (t), ..., a(3)

1 (t) for

arbitrarily fixed t ∈ BV . In order to separate the leaves passing through
the point a

(0)
1 (t), we make quadric transformations four times successively.

2.3.1. The first quadric transformation with center a
(0)
1 (t). Let

(z(1)
1 , w

(1)
1 ) ∈ C2 and (Z(1)

1 ,W
(1)
1 ) ∈ C2 be coordinate systems of V

(1)
1 (t) =

Q
a
(0)
1 (t)

(U1 × t) defined by

(2.7)
x1 = 1 + z

(1)
1 , y1 = z

(1)
1 w

(1)
1 ,

x1 = 1 + Z
(1)
1 W

(1)
1 , y1 = W

(1)
1 ,
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then
D

(1)
1 (t) := Q

a
(0)
1 (t)

(a(0)
1 (t)) = {z(1)

1 = 0} ∪ {W (1)
1 = 0},

and our system is expressed as

dz

dw
=

(O(z) + O(w))z
(−ηtw + O(z))w

,
dt

dw
=

tz

−ηtw + O(z)
,

in a neighborhood of D
(1)
1 (t) = {z = 0} where (z, w) = (z(1)

1 , w
(1)
1 ), or

dW

dZ
=

O(W )W
ηt + O(W )

,
dt

dZ
=

tW

ηt + O(W )
,

in a neighborhood of (Z, W, t) = (0, 0, t) where (Z,W ) = (Z(1)
1 ,W

(1)
1 ). Hence

we see that the point

a
(1)
1 (t) = {(z(1)

1 , w
(1)
1 , t) = (0, 0, t)} ∈ D

(1)
1 (t) ∩D

(0)
1 (t)

is a singular point and D
(1)
1 (t)− {a(1)

1 (t)} is a vertical leaf.

2.3.2. The second quadric transformation with center a
(1)
1 (t). Let

(z(2)
1 , w

(2)
1 ) ∈ C2 and (Z(2)

1 ,W
(2)
1 ) ∈ C2 be coordinate systems of V

(2)
1 (t) =

Q
a
(1)
1 (t)

(V (1)
1 (t)) defined by

(2.8)
z
(1)
1 = z

(2)
1 , w

(1)
1 = z

(2)
1 w

(2)
1 ,

z
(1)
1 = Z

(2)
1 W

(2)
1 , w

(1)
1 = W

(2)
1 ,

then
D

(2)
1 (t) := Q

a
(1)
1 (t)

(a(1)
1 (t)) = {z(2)

1 = 0} ∪ {W (2)
1 = 0},

and our system is written as

dz

dw
=

(O(1) + O(z) + O(w))z
(−2− 2ηtw + O(z))w

,
dt

dw
=

tz

−2− 2ηtw + O(z)
,

in a neighborhood of D
(2)
1 (t) = {z = 0} where (z, w) = (z(2)

1 , w
(2)
1 ), or

dz

dt
=

1
t
[2 + O(z) + O(w)],

dw

dt
=

1
t
[−2 + O(z) + O(w)],

in a neighborhood of (z, w, t) = (0, 0, t) where (z, w) = (z(2)
1 , w

(2)
1 ), or

dZ

dt
=

1
t
[2ηt + O(Z) + O(W )],

dW

dt
=

1
t
[−2ηt + O(Z) + O(W )],
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in a neighborhood of (Z, W, t) = (0, 0, t) where (Z, W ) = (Z(2)
1 , W

(2)
1 ). There-

fore we see that the points

a
(2)
1 (t) = {(z(2)

1 , w
(2)
1 , t) = (0,−1/(ηt), t)} ∈ D

(2)
1 (t),

b
(2)
10 (t) = {(z(2)

1 , w
(2)
1 , t) = (0, 0, t)} ∈ D

(2)
1 (t) ∩D

(0)
1 (t),

b
(2)
1∞(t) = {(Z(2)

1 ,W
(2)
1 , t) = (0, 0, t)} ∈ D

(2)
1 (t) ∩D

(1)
1 (t)

are singular points, b
(2)
10 (t) and b

(2)
1∞(t) are inaccessible singular points, and

D
(2)
1 (t)− {a(2)

1 (t), b(2)
10 (t), b(2)

1∞(t)} is a vertical leaf.

2.3.3. The third quadric transformation with center a
(2)
1 (t). Here

we insert a change of variables

(2.9) z
(2)
1 = z

(2)
1 , w

(2)
1 = 1/v

(2)
1 ,

namely, a change of local coordinates near the point a
(2)
1 (t). The change of

variables is necessary for making transition functions in a description of EV

symplectic.
Let (z(3)

1 , w
(3)
1 ) ∈ C2 and (Z(3)

1 ,W
(3)
1 ) ∈ C2 be coordinate systems of

V
(3)
1 (t) = Q

a
(2)
1 (t)

(V (2)
1 (t)) defined by

(2.10)
z
(2)
1 = z

(3)
1 , v

(2)
1 = −ηt + z

(3)
1 w

(3)
1 ,

z
(2)
1 = Z

(3)
1 W

(3)
1 , v

(2)
1 = −ηt + W

(3)
1 ,

then
D

(3)
1 (t) := Q

a
(2)
1 (t)

(a(2)
1 (t)) = {z(3)

1 = 0} ∪ {W (3)
1 = 0}.

We see that our system is expressed as

dz

dw
=

(−ηt + O(z))z
2ηt((κt + 1)− w) + O(z)

,
dt

dw
=

tz

2ηt((κt + 1)− w) + O(z)
,

in a neighborhood of D
(3)
1 (t) = {z = 0} where (z, w) = (z(3)

1 , w
(3)
1 ), or

dZ

dt
=

1
t
[ηt + O(Z) + O(W )],

dW

dt
=

1
t
[−2ηt + O(Z) + O(W )],

in a neighborhood of (Z, W, t) = (0, 0, t) where (Z, W ) = (Z(3)
1 , W

(3)
1 ). There-

fore,
a
(3)
1 (t) = {(z(3)

1 , w
(3)
1 , t) = (0, κt + 1, t)} ∈ D

(3)
1 (t)
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b
(3)
1 (t) = {(Z(3)

1 ,W
(3)
1 , t) = (0, 0, t)} ∈ D

(3)
1 (t) ∩D

(2)
1 (t)

are singular points, b
(3)
1 (t) is an inaccessible singular point, and D

(3)
1 (t) −

{a(3)
1 (t), b(3)

1 (t)} is a vertical leaf.

2.3.4. The fourth quadric transformation with center a
(3)
1 (t). Let

(z(4)
1 , w

(4)
1 ) ∈ C2 and (Z(4)

1 ,W
(4)
1 ) ∈ C2 be coordinate systems of V

(4)
1 (t) =

Q
a
(3)
1 (t)

(V (3)
1 (t)) defined by

(2.11)
z
(3)
1 = z

(4)
1 , w

(3)
1 = (κt + 1) + z

(4)
1 w

(4)
1 ,

z
(3)
1 = Z

(4)
1 W

(4)
1 , w

(3)
1 = (κt + 1) + W

(4)
1 .

We can verify that the Pfaffian system is written as

tdz
(4)
1 − P1(z

(4)
1 , w

(4)
1 , t)dt = 0,

tdw
(4)
1 −Q1(z

(4)
1 , w

(4)
1 , t)dt = 0,

in the coordinates z
(4)
1 , w

(4)
1 , and t where P1, Q1 are certain polynomials of

z
(4)
1 , w

(4)
1 , and t. This means that the foliation has no singular points in

(z(4)
1 , w

(4)
1 , t)-space C2 × BV and every leaf in the space is transversal with

fibers. On the other hand, we can verify that

dZ

dW
=

ZO(Z)
−ηt + O(Z)

,
dt

dW
=

tZ

−ηt + O(Z)
,

in a neighborhood of (Z, W, t) = (0, 0, t) where (Z,W ) = (Z(4)
1 ,W

(4)
1 ), which

shows that the point (Z(4)
1 ,W

(4)
1 , t) = (0, 0, t) is not a singular point of the

foliation and the leaf which passes the point is the vertical leaf D
(3)
1 (t) −

{b(3)
1 (t)}.

2.4. The space EV . Denote by Φt the composition of all the above eight
quadric transformations. Then the space constructed by K. Okamoto([7]) is
the space defined by

EV =
⋃

t∈BV

EV (t)×t, EV (t) = EV (t)−D(0)(t)∪
⋃

ν=0,∞
D(1)

ν (t)∪
⋃

k=1,2,3

D
(k)
1 (t)

where
EV (t) = Φt(Σε × t).

We can verify that the extended system of (HV ) defines a uniform foliation
on EV .

12



By following the above procedure, we see that EV is a 3-dimensional
complex manifold obtained by glueing

{(x0, y0, t) ∈ C2 ×BV }, {(x2, y2, t) ∈ C2 ×BV },
{(Z(2)

ν ,W (2)
ν , t) ∈ C2 ×BV }, ν = 0,∞,

{(z(4)
1 , w

(4)
1 , t) ∈ C2 ×BV },

via the coordinate transformations (2.1) – (2.11). It is easy to see that

dy0 ∧ dx0 = dy2 ∧ dx2,

dy0 ∧ dx0 = −dW
(2)
0 ∧ dZ

(2)
0 , dy2 ∧ dx2 = −dW (2)

∞ ∧ dZ(2)
∞ ,

dy0 ∧ dx0 = dw
(4)
1 ∧ dz

(4)
1 .

Therefore, by choosing new coordinate systems as

(x(00), y(00)) = (x0, y0),

(x(0∞), y(0∞)) = (−Z
(2)
0 , W

(2)
0 ), (x(1∞), y(1∞)) = (z(4)

1 , w
(4)
1 ),

(x(∞0+), y(∞0+)) = (x2, y2), (x(∞0−), y(∞0−)) = (−Z(2)
∞ ,W (2)

∞ ),

we obtain a description of EV given in THEOREM 1. Thus we have proved
THEOREM 1.

Figure 1. J = V

§3. Proof of THEOREM 2.

In the following sections, we only give the exact forms of our transforma-
tions, because the verification of the transformations is the same as that in
the preceding section, §2.

In the case of J = IV , we take ε for Σε as

ε = κ∞.
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3.1. Extend the system (HIV ) defined in U0×BIV 3 (x0, y0, t) = (x, y, t)
to a Pfaffian system defined in the whole space Σε × BIV . Then, in Ui ×
BIV , i = 0, 2, the foliation defined by the Pfaffian system has no singular
points and every leaf is transversal with fibers, however, in Ui×BIV , i = 1, 3,
the foliation has both singular points and vertical leaves. We see that, for
any fixed t ∈ BV I , D(0)(t)− ∪ν{a(0)

ν (t)} is a vertical leaf and the two points
a
(0)
ν (t), ν = 0,∞ are singular points of the foliation, where

D(0)(t) = (U1(y1 = 0)× t) ∪ (U3(y3 = 0)× t) ∼= P1,

a
(0)
0 (t) = {(x1, y1, t) = (0, 0, t)}, a(0)

∞ (t) = {(x3, y3, t) = (0, 0, t)}.

3.2. Quadric transformations with centers a
(0)
0 (t) and a

(1)
0 (t) for

any fixed t ∈ BIV . In order to separate the leaves passing through the point
a
(0)
0 (t), we make quadric transformations two times successively.

3.2.1. The first quadric transformation with center a
(0)
0 (t). Let

(3.1)
x1 = z

(1)
0 , y1 = z

(1)
0 w

(1)
0 ,

x1 = Z
(1)
0 W

(1)
0 , y1 = W

(1)
0 ,

then

D
(1)
0 (t) := Q

a
(0)
0 (t)

(a(0)
0 (t)) = {z(1)

0 = 0} ∪ {W (1)
0 = 0},

the points

a
(1)
0 (t) = {(Z(1)

0 ,W
(1)
0 , t) = (κ0, 0, t)} ∈ D

(1)
0 (t),

b
(1)
0 (t) = {(z(1)

0 , w
(1)
0 , t) = (0, 0, t)} ∈ D(0)(t) ∩D

(1)
0 (t)

are singular points of the foliation, D
(1)
0 (t)−{a(1)

0 (t), b(1)
0 (t)} is a vertical leaf,

and b
(1)
0 (t) is an inaccessible singular point.

3.2.2. The second quadric transformation with center a
(1)
0 (t).

Let

(3.2)
Z

(1)
0 = κ0 + z

(2)
0 , W

(1)
0 = z

(2)
0 w

(2)
0 ,

Z
(1)
0 = κ0 + Z

(2)
0 W

(2)
0 , W

(1)
0 = W

(2)
0 ,

then

D
(2)
0 (t) := Q

a
(1)
0 (t)

(a(1)
0 (t)) = {z(2)

0 = 0} ∪ {W (2)
0 = 0},
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We see that, in the (Z(2)
0 , W

(2)
0 , t)-space C2 × BIV , the Pfaffian system has

no singular points, every leaf is transversal with the fibers, and the point
(z(2)

0 , w
(2)
0 , t) = (0, 0, t) is not a singular point of the foliation and the leaf

which passes it is the vertical leaf D
(1)
0 (t)− {b(1)

0 (t)}.
3.3. Quadric transformations with centers a

(0)
∞ (t), ..., a(5)

∞ (t) for

any fixed t ∈ BIV . To separate the leaves passing through the point a
(0)
∞ (t),

we make quadric transformations six times successively.

3.3.1. The first quadric transformation with center a
(0)
∞ (t). Let

(3.3)
x3 = z(1)

∞ , y3 = z(1)
∞ w(1)

∞ ,

x3 = Z(1)
∞ W (1)

∞ , y3 = W (1)
∞ ,

then
D(1)
∞ (t) := Q

a
(0)
∞ (t)

(a(0)
∞ (t)) = {z(1)

∞ = 0} ∪ {W (1)
∞ = 0},

the point
a(1)
∞ (t) = {(z(1)

∞ , w(1)
∞ , t) = (0, 0, t)} ∈ D(1)

∞ (t)

is a singular point of the foliation, and D
(1)
∞ (t)− {a(1)

∞ (t)} is a vertical leaf.

3.3.2. The second quadric transformation with center a
(1)
∞ (t).

Let

(3.4)
z(1)
∞ = z(2)

∞ , w(1)
∞ = z(2)

∞ w(2)
∞ ,

z(1)
∞ = Z(2)

∞ W (2)
∞ , w(1)

∞ = W (2)
∞ ,

then
D(2)
∞ (t) := Q

a
(1)
∞ (t)

(a(1)
∞ (t)) = {z(2)

∞ = 0} ∪ {W (2)
∞ = 0},

the points

a(2)
∞ (t) = {(z(2)

∞ , w(2)
∞ , t) = (0, 0, t)} ∈ D(2)

∞ (t),

b(2)
∞ (t) = {(Z(2)

∞ ,W (2)
∞ , t) = (0, 0, t)} ∈ D(1)

∞ (t) ∩D(2)
∞ (t)

are singular points of the foliation, the point b
(2)
∞ (t) is an inaccessible singular

point, and D
(2)
∞ (t)− {a(2)

∞ (t), b(2)
∞ (t)} is a vertical leaf.

3.3.3. The third quadric transformation with center a
(2)
∞ (t). Let

(3.5)
z(2)
∞ = z(3)

∞ , w(2)
∞ = z(3)

∞ w(3)
∞ ,

z(2)
∞ = Z(3)

∞ W (3)
∞ , w(2)

∞ = W (3)
∞ ,
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then
D(3)
∞ (t) := Q

a
(2)
∞ (t)

(a(2)
∞ (t)) = {z(3)

∞ = 0} ∪ {W (3)
∞ = 0}.

We see that

a(3)
∞ (t) = {(z(3)

∞ , w(3)
∞ , t) = (0,−2, t)} ∈ D(3)

∞ (t),

b
(3)
∞0(t) = {(z(3)

∞ , w(3)
∞ , t) = (0, 0, t)} ∈ D(0)(t) ∩D(3)

∞ (t),

b(3)
∞∞(t) = {(Z(3)

∞ ,W (3)
∞ , t) = (0, 0, t)} ∈ D(2)

∞ ∩D(3)
∞ (t)

are singular points of the foliation, the points b
(3)
∞0(t) and b

(3)
∞∞(t) are inaccess-

sible singular points, and D
(3)
∞ (t)− {a(3)

∞ (t), b(3)
∞0(t), b

(3)
∞∞} is a vertical leaf.

3.3.4. The fourth quadric transformation with center a
(3)
∞ (t).

Here we take a change of coordinate systems near the point a
(3)
∞ (t) given by

(3.6) z(3)
∞ = z(3)

∞ , w(3)
∞ = 1/v(3)

∞ .

Let

(3.7)
z(3)
∞ = z(4)

∞ , v(3)
∞ = −1/2 + z(4)

∞ w(4)
∞ ,

z(3)
∞ = Z(4)

∞ W (4)
∞ , v(3)

∞ = −1/2 + W (4)
∞ ,

then
D(4)
∞ (t) := Q

a
(3)
∞ (t)

(a(3)
∞ (t)) = {z(4)

∞ = 0} ∪ {W (4)
∞ = 0},

the points

a(4)
∞ (t) = {(z(4)

∞ , w(4)
∞ , t) = (0,−t, t)} ∈ D(4)

∞ (t),

b(4)
∞ (t) = {(Z(4)

∞ ,W (4)
∞ , t) = (0, 0, t)} ∈ D(3)

∞ (t) ∩D(4)
∞ (t)

are singular points of the foliation, b
(4)
∞ (t) is an inaccessible singular point,

and D
(4)
∞ (t)− {a(4)

∞ (t), b(4)
∞ (t)} is a vertical leaf.

3.3.5. The fifth quadric transformation with center a
(4)
∞ (t). Let

(3.8)
z(4)
∞ = z(5)

∞ , w(4)
∞ = −t + z(5)

∞ w(5)
∞ ,

z(4)
∞ = Z(5)

∞ W (5)
∞ , w(4)

∞ = −t + W (5)
∞ ,

then
D(5)
∞ (t) := Q

a
(4)
∞ (t)

(a(4)
∞ (t)) = {z(5)

∞ = 0} ∪ {W (5)
∞ = 0},

the points

a(5)
∞ (t) = {(z(5)

∞ , w(5)
∞ , t) = (0, 1− κ0 + 2κ∞, t)} ∈ D(5)

∞ (t),

b(5)
∞ (t) = {(Z(5)

∞ ,W (5)
∞ , t) = (0, 0, t)} ∈ D(4)

∞ (t) ∩D(5)
∞ (t)
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are singular points of the foliation, b
(5)
∞ (t) is an inaccessible singular point,

and D
(5)
∞ (t)− {a(5)

∞ (t), b(5)
∞ (t)} is a vertical leaf.

3.3.6. The sixth quadric transformation with center a
(5)
∞ (t). Let

(3.9)
z(5)
∞ = z(6)

∞ , w(5)
∞ = (1− κ0 + 2κ∞) + z(6)

∞ w(6)
∞ ,

z(5)
∞ = Z(6)

∞ W (6)
∞ , w(5)

∞ = (1− κ0 + 2κ∞) + W (6)
∞ ,

then
D(6)
∞ (t) := Q

a
(5)
∞ (t)

(a(5)
∞ (t)) = {z(6)

∞ = 0} ∪ {W (6)
∞ = 0}.

We can verify that our system has no singular points and every leaf is
transversal with the fibers in the (z(6)

∞ , w
(6)
∞ , t)-space C2×BIV , moreover, the

point (Z(6)
∞ ,W

(6)
∞ , t) = (0, 0, t) is not a singular point of the foliation and the

leaf which passes it is the vertical leaf D
(5)
∞ (t)− {b(5)

∞ (t)}.
3.4. The space EIV . Denote by Φt the composition of all the above

eight quadric transformations. Then the space constructed by K. Okamoto is
the space defined by

EIV =
⋃

t∈BIV

EIV (t)× t, EIV (t) = EIV (t)−D(0)(t) ∪D
(1)
0 (t)

⋃

1≤k≤5

D
(k)
0 (t)

where
EIV (t) = Φt(Σε × t).

By the above procedure, we see that EIV is a 3-dimensional complex
manifold obtained by glueing

{(x0, y0, t) ∈ C2 ×BIV }, {(x2, y2, t) ∈ C2 ×BIV },

{(Z(2)
0 ,W

(2)
0 , t) ∈ C2 ×BIV }, {(z(6)

∞ , w(6)
∞ , t) ∈ C2 ×BIV },

via the coordinate transformations (3.1) – (3.9), and

dy0∧dx0 = dy2∧dx2, dy0∧dx0 = −dW
(2)
0 ∧dZ

(2)
0 , dy2∧dx2 = dw(6)

∞ ∧dz(6)
∞ .

Therefore, by choosing new coordinate systems as

(x(00), y(00)) = (x0, y0), (x(0∞), y(0∞)) = (−Z
(2)
0 ,W

(2)
0 ),

(x(∞0), y(∞0)) = (x2, y2), (x(∞∞), y(∞∞)) = (z(6)
∞ , w(6)

∞ ),
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we obtain an expression of EIV given in THEOREM 2, which completes the
proof of the theorem.

Figure 2. J = IV

§4. Proof of THEOREM 3.

In the case of J = III, we take ε for Σε as that given by (1.16).

4.1. For any fixed t ∈ BIII , our extended Pfaffian system has two singu-
lar points a

(0)
ν (t), ν = 0,∞ and a vertical leaf D(0)(t)−∪ν{a(0)

ν (t)} on a fiber
Σε × t where

D(0)(t) = (U1(y1 = 0)× t) ∪ (U3(y3 = 0)× t) ∼= P1,

a
(0)
0 (t) = {(x1, y1, t) = (0, 0, t)}, a(0)

∞ (t) = {(x3, y3, t) = (0, 0, t)}.

4.2. Quadric transformations with centers a
(0)
0 (t), ..., a(3)

0 (t) for

any fixed t ∈ BIII . To separate the leaves passing through the point a
(0)
0 (t),

we make quadric transformations four times successively.
4.2.1. The first quadric transformation with center a

(0)
0 (t). Let

(4.1)
x1 = z

(1)
0 , y1 = z

(1)
0 w

(1)
0 ,

x1 = Z
(1)
0 W

(1)
0 , y1 = W

(1)
0 ,

then

D
(1)
0 (t) := Q

a
(0)
0 (t)

(a(0)
0 (t)) = {z(1)

0 = 0} ∪ {W (1)
0 = 0},

the point

a
(1)
0 (t) = {(z(1)

0 , w
(1)
0 , t) = (0, 0, t)} ∈ D

(1)
0 (t)

is a singular point of the foliation, and D
(1)
0 (t)− {a(1)

0 (t)} is a vertical leaf.
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4.2.2. The second quadric transformation with center a
(1)
0 (t).

Let

(4.2)
z
(1)
0 = z

(2)
0 , w

(1)
0 = z

(2)
0 w

(2)
0 .

z
(1)
0 = Z

(2)
0 W

(2)
0 , w

(1)
0 = W

(2)
0 ,

then
D

(2)
0 (t) := Q

a
(1)
0 (t)

(a(1)
0 (t)) = {z(2)

0 = 0} ∪ {W (2)
0 = 0},

the points

a
(2)
0 (t) = {(z(2)

0 , w
(2)
0 , t) = (0,−1/η0t, t)} ∈ D

(2)
0 (t),

b
(2)
00 (t) = {(z(2)

0 , w
(2)
0 , t) = (0, 0, t)} ∈ D(0)(t) ∩D

(2)
0 (t),

b
(2)
0∞(t) = {(Z(2)

0 ,W
(2)
0 , t) = (0, 0, t)} ∈ D

(1)
0 (t) ∩D

(2)
0 (t)

are singular points of the foliation, b
(2)
00 (t), b(2)

0∞(t) are inaccessible singular
points, and D

(2)
0 (t)− {a(2)

0 (t), b(2)
00 (t), b(2)

0∞(t)} is a vertical leaf.

4.2.3. The third quadric transformation with center a
(2)
0 (t). We

insert here the transformation

(4.3) z
(2)
0 = z

(2)
0 , w

(2)
0 = 1/v

(2)
0 .

Let

(4.4)
z
(2)
0 = z

(3)
0 , v

(2)
0 = −η0t + z

(3)
0 w

(3)
0 ,

z
(2)
0 = Z

(3)
0 W

(3)
0 , v

(2)
0 = −η0t + W

(3)
0 ,

then
D

(3)
0 (t) := Q

a
(2)
0 (t)

(a(2)
0 (t)) = {z(3)

0 = 0} ∪ {W (3)
0 = 0},

the points

a
(3)
0 (t) = {(z(3)

0 , w
(3)
0 , t) = (0, κ0 + 1, t)} ∈ D

(3)
0 (t),

b
(3)
0 (t) = {(Z(3)

0 ,W
(3)
0 , t) = (0, 0, t)} ∈ D

(2)
0 (t) ∩D

(3)
0 (t)

are singular points of the foliation, the point b
(3)
0 (t) is an inaccessible singular

point, and D
(3)
0 (t)− {a(3)

0 (t), b(3)
0 (t)} is a vertical leaf.

4.2.4. The fourth quadric transformation with center a
(3)
0 (t). Let

(4.5)
z
(3)
0 = z

(4)
0 , w

(3)
0 = (κ0 + 1) + z

(4)
0 w

(4)
0 ,

z
(3)
0 = Z

(4)
0 W

(4)
0 , w

(3)
0 = (κ0 + 1) + W

(4)
0 ,
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then

D
(4)
0 (t) = Q

a
(3)
0 (t)

(a(3)
0 (t)) = {z(4)

0 = 0} ∪ {W (4)
0 = 0}.

We see that our system has no singular points and every leaf is transver-
sal with the fibers in the (z(4)

0 , w
(4)
0 , t)-space C2 × BIII , moreover, the point

(Z(4)
0 ,W

(4)
0 , t) = (0, 0, t) is not a singular point of the foliation and the leaf

which passes it is the vertical leaf D
(3)
0 (t)− {b(3)

0 (t)}.

4.3. Quadric transformations with centers a
(0)
∞ (t), ..., a(3)

∞ (t) for

any fixed t ∈ BIII . This procedure is the same as that given in 4.2. provided
the constants κ0, κ∞, η0, η∞ are replaced by κ∞−1, κ0+1, η∞, η0 respectively.

4.4. The space EIII . Let Φt denote the composition of all the above
eight quadric transformations. Then the space constructed by K. Okamoto is
the space defined by

EIII =
⋃

t∈BIII

EIII(t)× t, EIII(t) = EIII(t)−D(0)(t)∪
⋃

ν=0,∞,1≤k≤3

D(k)
ν (t)

where

EIII(t) = Φt(Σε × t).

We see that EIII is a 3-dimensional complex manifold obtained by glueing

{(x0, y0, t) ∈ C2 ×BIII}, {(x2, y2, t) ∈ C2 ×BIII},

{(z(4)
0 , w

(4)
0 , t) ∈ C2 ×BIII}, {(z(4)

∞ , w(4)
∞ , t) ∈ C2 ×BIII},

via the coordinate transformations (4.1) – (4.5) for ν = 0 and and the corre-
sponding ones for ν = ∞, and

dy0∧dx0 = dy2∧dx2, dy0∧dx0 = dw
(4)
0 ∧dz

(4)
0 , dy2∧dx2 = dw(4)

∞ ∧dz(4)
∞ .

Therefore, by taking new coordinate systems as

(x(00), y(00)) = (x0, y0), (x(0∞), y(0∞)) = (z(4)
0 , w

(4)
0 ),

(x(∞0), y(∞0)) = (x2, y2), (x(∞η∞t), y(∞η∞t)) = (z(4)
∞ , w(4)

∞ ),
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we obtain an expression of EIII given in THEOREM 3, which proves the
theorem.

Figure 3. J = III

§5. Proof of THEOREM 4.

In the case of J = II, we take ε for Σε as (1.20).
5.1. For any fixed t ∈ BIII , our extended Pfaffian system has a singular

point a
(0)
∞ (t) and a vertical leaf D(0)(t)− {a(0)

∞ (t)} on a fiber Σε × t where

D(0)(t) = (U1(y1 = 0)× t) ∪ (U3(y3 = 0)× t) ∼= P1,

a(0)
∞ (t) = {(x3, y3, t) = (0, 0, t)}.

5.2. Quadric transformations with centers a
(0)
∞ (t), ..., a(7)

∞ (t) for

any fixed t ∈ BII . To separate the solutions which pass through the point
a
(0)
∞ (t), we make quadric transformations eight times successively.

5.2.1. The first quadric transformation with center a
(0)
∞ (t). Let

(5.1)
x3 = z(1)

∞ , y3 = z(1)
∞ w(1)

∞ ,

x3 = Z(1)
∞ W (1)

∞ , y3 = W (1)
∞ ,

then
D(1)
∞ (t) := Q

a
(0)
∞ (t)

(a(0)
∞ (t)) = {z(1)

∞ = 0} ∪ {W (1)
∞ = 0},

the point
a(1)
∞ (t) = {(z(1)

∞ , w(1)
∞ , t) = (0, 0, t)} ∈ D(1)

∞ (t)

is a singular point of the foliation and D
(1)
∞ (t)− {a(1)

∞ (t)} is a vertical leaf.

5.2.2. The second quadric transformation with center a
(1)
∞ (t).

Let

(5.2)
z(1)
∞ = z(2)

∞ , w(1)
∞ = z(2)

∞ w(2)
∞ ,

z(1)
∞ = Z(2)

∞ W (2)
∞ , w(1)

∞ = W (2)
∞ ,
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then
D(2)
∞ (t) := Q

a
(1)
∞ (t)

(a(1)
∞ (t)) = {z(2)

∞ = 0} ∪ {W (2)
∞ = 0},

the points

a(2)
∞ (t) = {(z(2)

∞ , w(2)
∞ , t) = (0, 0, t)} ∈ D(2)

∞ (t),

b(2)
∞ (t) = {(Z(2)

∞ ,W (2)
∞ , t) = (0, 0, t)} ∈ D(1)

∞ (t) ∩D(2)
∞ (t)

are singular points of the foliation, the point b
(2)
∞ (t) is an inaccessible singular

point, and D
(2)
∞ (t)− {a(2)

∞ (t), b(2)
∞ (t)} is a vertical leaf.

5.2.3. The third quadric transformation with center a
(2)
∞ (t). Let

(5.3)
z(2)
∞ = z(3)

∞ , w(2)
∞ = z(3)

∞ w(3)
∞ ,

z(2)
∞ = Z(3)

∞ W (3)
∞ , w(2)

∞ = W (3)
∞ ,

then
D(3)
∞ (t) := Q

a
(2)
∞ (t)

(a(2)
∞ (t)) = {z(3)

∞ = 0} ∪ {W (3)
∞ = 0},

the points

a(3)
∞ (t) = {(z(3)

∞ , w(3)
∞ , t) = (0, 0, t)} ∈ D(3)

∞ (t),

b(3)
∞ (t) = {(Z(3)

∞ ,W (3)
∞ , t) = (0, 0, t)} ∈ D(2)

∞ (t) ∩D(3)
∞ (t),

are singular points of the foliation, the point b
(3)
∞ (t) is an inaccessible singular

point, and D
(3)
∞ (t)− {a(3)

∞ (t), b(3)
∞ (t)} is a vertical leaf.

5.2.4. The fourth quadric transformation with center a
(3)
∞ (t). Let

(5.4)
z(3)
∞ = z(4)

∞ , w(3)
∞ = z(4)

∞ w(4)
∞ ,

z(3)
∞ = Z(4)

∞ W (4)
∞ , w(3)

∞ = W (4)
∞ ,

then
D(4)
∞ (t) := Q

a
(3)
∞ (t)

(a(3)
∞ (t)) = {z(4)

∞ = 0} ∪ {W (4)
∞ = 0},

the points

a(4)
∞ (t) = {(z(4)

∞ , w(4)
∞ , t) = (0,−1/2, t)} ∈ D(4)

∞ (t),

b
(4)
∞0(t) = {(z(4)

∞ , w(4)
∞ , t) = (0, 0, t)} ∈ D(0)(t) ∩D(4)

∞ (t),

b(4)
∞∞(t) = {(Z(4)

∞ ,W (4)
∞ , t) = (0, 0, t)} ∈ D(3)

∞ (t) ∩D(4)
∞ (t)

are singular points of the foliation, the points b
(4)
∞0(t), b

(4)
∞∞(t) are inaccessible

singular points, and D
(4)
∞ (t)− {a(4)

∞ (t)} is a vertical leaf.
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5.2.5. The fifth quadric transformation with center a
(4)
∞ (t). We

insert here a transformation given by

(5.5) z(4)
∞ = z(4)

∞ , w(4)
∞ = 1/v(4)

∞ .

Let

(5.6)
z(4)
∞ = z(5)

∞ , v(4)
∞ = −2 + z(5)

∞ w(5)
∞ ,

z(4)
∞ = Z(5)

∞ W (5)
∞ , v(4)

∞ = −2 + W (5)
∞ ,

then

D(5)
∞ (t) := Q

a
(4)
∞ (t)

(a(4)
∞ (t)) = {z(5)

∞ = 0} ∪ {W (5)
∞ = 0},

the points

a(5)
∞ (t) = {(z(5)

∞ , w(5)
∞ , t) = (0, 0, t)} ∈ D(5)

∞ (t),

b(5)
∞ (t) = {(Z(5)

∞ ,W (5)
∞ , t) = (0, 0, t)} ∈ D(0)(t) ∩D(5)

∞ (t)

are singular points of the foliation, the point b
(5)
∞ (t) is an inaccessible singular

point, and D
(5)
∞ (t)− {a(5)

∞ (t), b(5)
∞ (t)} is a vertical leaf.

5.2.6. The sixth quadric transformation with center a
(5)
∞ (t). Let

(5.7)
z(5)
∞ = z(6)

∞ , w(5)
∞ = z(6)

∞ w(6)
∞ ,

z(5)
∞ = Z(6)

∞ W (6)
∞ , w(5)

∞ = W (6)
∞ ,

then

D(6)
∞ (t) := Q

a
(5)
∞ (t)

(a(5)
∞ (t)) = {z(6)

∞ = 0} ∪ {W (6)
∞ = 0},

the points

a(6)
∞ (t) = {(z(6)

∞ , w(6)
∞ , t) = (0,−t, t)} ∈ D(6)

∞ (t),

b(6)
∞ (t) = {(Z(6)

∞ ,W (6)
∞ , t) = (0, 0, t)} ∈ D(5)

∞ (t) ∩D(6)
∞ (t)

are singular points of the foliation, the point b
(6)
∞ (t) is an inaccessible singular

point, and D
(6)
∞ (t)− {a(6)

∞ (t), b(6)
∞ (t)} is a vertical leaf.

5.2.7. The seventh quadric transformation with center a
(6)
∞ (t).

¯
Let

(5.8)
z(6)
∞ = z(7)

∞ , w(6)
∞ = −t + z(7)

∞ w(7)
∞ ,

z(6)
∞ = Z(7)

∞ W (7)
∞ , w(6)

∞ = −t + W (7)
∞ ,
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then
D(7)
∞ (t) := Q

a
(6)
∞ (t)

(a(6)
∞ (t)) = {z(7)

∞ = 0} ∪ {W (7)
∞ = 0},

the points

a(7)
∞ (t) = {(z(7)

∞ , w(7)
∞ , t) = (0,−2α, t)} ∈ D(7)

∞ (t),

b(7)
∞ (t) = {(Z(7)

∞ ,W (7)
∞ , t) = (0, 0, t)} ∈ D(6)

∞ (t) ∩D(7)
∞ (t)

are singular points of the foliation, the point b
(7)
∞ (t) is an inaccessible singular

point, and D
(7)
∞ (t)− {a(7)

∞ (t), b(7)
∞ (t)} is a vertical leaf.

5.2.8. The eighth quadric transformation with center a
(7)
∞ (t). Let

(5.9)
z(7)
∞ = z(8)

∞ , w(7)
∞ = −2α + z(8)

∞ w(8)
∞ ,

z(7)
∞ = Z(8)

∞ W (8)
∞ , w(7)

∞ = −2α + W (8)
∞ ,

then
D(8)
∞ (t) := Q

a
(7)
∞ (t)

(a(7)
∞ (t)) = {z(8)

∞ = 0} ∪ {W (8)
∞ = 0}.

We see that, in the (z(8)
∞ , w

(8)
∞ , t)-space C2 × BII , our system has no

singular points and every leaf is transversal with the fibers, moreover, the
point (Z(8)

∞ ,W
(8)
∞ , t) = (0, 0, t) is not a singular point of the foliation and the

leaf which passes the point is the vertical leaf D
(7)
∞ (t)− {b(7)

∞ (t)}.
5.4. The space EII . Let Φt denote the composition of all the above

eight quadric transformations. Then a space defined by

EII =
⋃

t∈BII

EII(t)× t, EII(t) = EII(t)−D(0)(t) ∪
⋃

1≤k≤7

D(k)
∞ (t),

where
EII(t) = Φt(Σε × t),

is the space constructed by K. Okamoto.
By the above procedure, we can see that EII is a 3-dimensional complex

manifold obtained by glueing

{(x0, y0, t) ∈ C2×BII}, {(x2, y2, t) ∈ C2×BII}, {(z(8)
∞ , w(8)

∞ , t) ∈ C2×BII},

via the coordinate transformations (5.1) – (5.9), and

dy0 ∧ dx0 = dy2 ∧ dx2, dy2 ∧ dx2 = dw(8)
∞ ∧ dz(8)

∞ .
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Therefore, by choosing coordinate systems as

(x(00), y(00)) = (x0, y0), (x(∞0), y(∞0)) = (x2, y2),

(x(∞∞), y(∞∞)) = (z(8)
∞ , w(8)

∞ ),

we obtain an expression of EII given in THEOREM 4, which shows the the-
orem.

Figure 4. J = II
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