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1 Introduction

The purpose of this paper is to show that we can take coordinate systems
determined by the Bäcklund transformations as coordinate systems of the man-
ifolds of Painlevé systems constructed by K. Okamoto ([10]) (except the first
one) and that the manifolds with parameters equivalent under the corresponding
affine Weyl groups are mutually isomorphic.

The J-th Painlevé system (J = II, III, IV, V, V I) which is equivalent to the
J-th Painlevé equation is the following Hamiltonian system

(HJ,α) δq = {HJ (q, p, t, α), q}, δp = {HJ(q, p, t, α), p},

where δ = d/dt for J = II, IV , δ = td/dt for J = III, V , δ = t(t − 1)d/dt for
J = V I, {·, ·} is the Poisson bracket defined by

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
,

and the Hamiltonian HJ (q, p, t, α), α = (α0, α1, ...) being parameters with a
relation, is given by

HII(q, p, t, α) =
1
2
p2 − (q2 +

t

2
)p− α1q

(α0 + α1 = 1),
HIII(q, p, t, α) = q2p(p− 1) + q[(α0 + α2)p− α0] + tp

(α0 + 2α1 + α2 = 1),
HIV (q, p, t, α) = qp(p− q − 2t)− 2α1p− 2α2q

(α0 + α1 + α2 = 1),
HV (q, p, t, α) = q(q − 1)p(p + t)− (α1 + α3)qp + α1p + α2tq

(α0 + α1 + α2 + α3 = 1),
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HV I(q, p, t, α) = q(q − 1)(q − t)p2 − [(α0 − 1)q(q − 1) + α4(q − 1)(q − t)
+α3q(q − t)]p + α2(α1 + α2)(q − t)

(α0 + α1 + 2α2 + α3 + α4 = 1).

We notice that the forms of the Hamiltonians for J = III, IV, V given here are
slightly different from those in [2],[14],[4]. The Hamiltonian for J = III or IV
or V is obtained from that for J = III ′ or IV or V in [2] respectively by certain
change of variables (see Section 3).

Each Painlevé system determines a complex one dimensional nonsingular
foliation of C2 ×BJ(3 (q, p, t)) where

BII = BIV = C, BIII = BV = C− {0}, BV I = C− {0, 1}.

The system is holomorphically extended to one on a manifold EJ,α which is a
fiber space over BJ having the C2 × BJ as a fiber subspace and the extended
system defines a uniform foliation FJ,α of EJ,α although the foliation of the
C2 ×BJ is not uniform ([14],[4],[10]). Here the uniformity of the foliation FJ,α

means that, for any point P0 ∈ EJ,α, every curve in BJ starting from πJ(P0)
is lifted on the leaf passing through P0, where πJ is the projection from EJ,α to
BJ . We notice that the uniformity of the foliation is equivalent to the so-called
Painlevé property for the Painlevé system, that is, if (q(t), p(t)) is a local solution
of (HJ,α) determined by an arbitrary initial condition q(t0) = q0 ∈ C, p(t0) =
p0 ∈ C with t0 ∈ BJ , then both q(t) and p(t) can be meromorphically continued
along any curve in BJ with a starting point t0. The fibers of EJ,α are called the
spaces of initial conditions([10]). Each EJ,α is described by the original chart
C2 × BJ and a finite number of copies C2

i × BJ of C2 × BJ where coordinate
transformations are certain birational symplectic ones ([14],[4]).

On the other hand, each Painlevé system admits a Bäcklund transformation
group of certain birational symplectic transformations each of which preserves
the form of the Hamiltonian and changes the parameters αi as an element of an
affine Weyl group ([6],[7],[8],[9]). This fact was first recognized by K. Okamoto
([11]), but our presentation in the following is different from his.

Let K = C(q, p, t, α) (α = (α0, α1, ...) ) be a differential field of rational
functions of q, p, t, α with a derivation δ defined by

δf =
∂f

∂q
· {HJ (q, p, t, α), q}+

∂f

∂p
· {HJ(q, p, t, α), p}+ δ′f, f ∈ K,

where δ′ is ∂/∂t for J = II, IV , t∂/∂t for J = III, V , and t(t − 1)∂/∂t for
J = V I. (Notice that δαi = 0.) Then, there is a Bäcklund transformation
group W which is a lift of an affine Weyl group acting on the α-space such that

(i) each w ∈ W is an isomorphism from the field K to itself,
(ii) δw = wδ, for w ∈ W ,
(iii) w{f, g} = {w(f), w(g)} for w ∈ W, f, g ∈ K.
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The group W is generated by a finite number of reflections si.

For w ∈ W , consider a birational symplectic change of variables from (q, p, t)
to (qw, pw, tw) defined by

qw = w(q), pw = w(p), tw = w(t).

Then the Hamiltonian system (HJ,α) with α0 + ... = 1 is transformed to
(HJ,w(α)):

δqw = {HJ(qw, pw, tw, w(α)), qw}, δpw = {HJ(qw, pw, tw, w(α)), pw},
where w(α) = (w(α0), w(α1), ...) with w(α0) + ... = 1. (We notice that tw = t
for every w ∈ W in the case of J 6= III and tw = ±t in the case of J = III
and δ = δw where δw is the derivation with respect to tw.) Hence w extends the
domain of definition C2×BJ of the system (HJ,α) to C2×BJ tC2

w×BJ,w/ ∼,
where ∼ is an identification of the points (q, p, t) ∈ C2 ×BJ and (qw, pw, tw) ∈
C2

w×BJ,w(' C2×BJ ) by the above relation. The system (HJ,w(α)) is considered
to be the restriction of the extended Hamiltonian system on the chart C2

w×BJ,w.
We extend the domain of definition C2 × BJ of (HJ,α) by all w ∈ W . Let

EW
J,α be a manifold obtained by gluing the copies C2

w×BJ,w, w ∈ W of C2×BJ

via the relations

qw′ = w′w−1(qw), pw′ = w′w−1(pw), tw′ = w′w−1(tw)

for any w, w′ ∈ W :

EW
J,α :=

( ⊔

w∈W

C2
w ×BJ,w

)
/ ∼ .

The identification ∼ is well defined since W is a group. We often consider each
C2

w ×BJ,w a subset of EW
J,α.

The manifold EW
J,α is a fiber space over BJ and the extension of the Painlevé

system (HJ,α) on EW
J,α defines a complex one dimensional nonsingular foliation

of EW
J,α each leaf of which is transversal to fibers.

The main result of this paper is stated as:

Theorem 1. The identity mapping φ from C2×BJ ⊂ EW
J,α to the original

chart C2 ×BJ of EJ,α can be extended to an isomorphism

ϕ : EW
J,α −→ EJ,α.

In general, for any w ∈ W , the mapping φw from the chart C2
w × BJ,w 3

(qw, pw, tw) of EW
J,α to the original chart C2 × BJ 3 (q, p, t) of EJ,w(α) defined

by (q, p, t) = (qw, pw, tw) can be extended to an isomorphism

ϕw : EW
J,α −→ EJ,w(α).
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Here an isomorphism means a biholomorphic mapping which preserves fibers
and leaves of the foliations.

In the proof of the theorem, the uniformity of the foliation FJ,α of EJ,α

plays an essential role. One can find a proof of the uniformity in [15],[18],[1], for
example. By means of the theorem, we can say that the manifold EJ,α is covered
by the coordinate systems C2

w × BJ,w, w ∈ W . The coordinate systems are
convenient in that the Hamiltonians on them are easily obtained by the changes
of parameters. The following important fact is also an immediate consequence
of the theorem.

Corollary. The manifolds EJ,α and EJ,α′ are isomorphic if there exists
w ∈ W such that α′ = w(α).

In a private communication, we were informed that H. Umemura and J.
Matsuzawa had also obtained the corollary.

We notice that the manifold EW
J,α is covered by a finite number of coordinate

systems although it is defined by infinitely many ones. The fact is verified by
the above corollary, the following theorem in which si are the generators of W ,
and the property that, for any α, there is a w ∈ W such that none of w(αi)
(and w(α1 + α2) for J = V I) vanish. The theorem is also used in the proof of
Theorem 1.

Theorem 2. (The case of J = II, III, IV, V ) If none of αi vanish, then
(

C2 ×BJ

⊔( ⊔

i

C2
si
×BJ,si

)
)

/ ∼ ' EJ,α.

(The case of J = V I) If none of αi and α1 + α2 vanish, then

C2 ×BV I

⊔ ( ⊔

i=0,2,3,4

C2
si
×BV I

) ⊔
C2

s1s2
×BV I


 / ∼ ' EV I,α.

In Section 2, we give lists of certain generators of Bäcklund transformation
groups of Painlevé systems and show some propositions which will be used in the
proof of Theorem 1. In Section 3, we review the descriptions of the manifolds
EJ,α ([14],[4]) and give lists of Hamiltonians on all charts and then we show a
proposition. The succeeding sections are devoted to proving Theorems 1 and 2.
We first prove Theorem 2 in Section 4 and then prove Theorem 1 in Sections
5 and 6. In the case of J = V I, there appear divisors in EW

J,α and a divisor
in EJ,α at infinity of the original chart which are invariant with respect to the
foliations, and hence we have to observe them precisely.

In the end of this section, we note a work by H. Watanabe in which he has
given some relations between Bäcklund transformations and suitable descrip-
tions of the manifolds ([16],[17]).
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2 Bäcklund transformation groups

In this section, we give explicit forms of some natural generators si of the
Bäcklund transformation group W of each Painlevé system and some proposi-
tions. We give also generators of the extended Bäcklund transformation group
W̃ although it is not used in this paper. Each list consists of the type of
affine Weyl group, Dynkin diagram, generalized Cartan matrix, the fundamen-
tal relations of the generators of the Bäcklund transformation group W and
the extended Bäcklund transformation group W̃ , and the explicit forms of the
generators. Except for the case of PIII the group W̃ is the full symmetry group
which preserves the independent variable t.

2.1 The case of J = II

A
(1)
1 : c⇔ cα0 α1

(α0 + α1 = 1) A =
[

2 −2
−2 2

]

W (A(1)
1 ) = 〈s0, s1〉 : s2

0 = s2
1 = 1.

W̃ (A(1)
1 ) = 〈s0, s1, π〉 : s2

0 = s2
1 = 1 ; π2 = 1, πs0 = s1π, πs1 = s0π.

α0 α1 q p

s0 −α0 α1 + 2α0 q + α0
p−2q2−t p + 4α0q

p−2q2−t + 2α2
0

(p−2q2−t)2

s1 α0 + 2α1 −α1 q + α1
p p

π α1 α0 −q −p + 2q2 + t

The last list must be read as

s0(α0) = −α0, s0(α1) = α1 + 2α0,

s0(q) = q +
α0

p− 2q2 − t
, s0(p) = p +

4α0q

p− 2q2 − t
+

2α2
0

(p− 2q2 − t)2
,

and so on.

2.2 The case of J = III

C
(1)
2 : c⇒ c⇐ cα0 α1 α2

(α0 + 2α1 + α2 = 1) A =




2 −1 0
−2 2 −2
0 −1 2




W (C(1)
2 ) = 〈s0, s1, s2〉 : s2

0 = s2
1 = s2

2 = 1, (s0s1)4 = (s1s2)4 = 1.

W̃ (C(1)
2 ) = 〈s0, s1, s2, π〉 :

s2
0 = s2

1 = s2
2 = 1, (s0s1)4 = (s1s2)4 = 1,

π2 = 1, πs0 = s2π, πs1 = s1π, πs2 = s0π.
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α0 α1 α2 t q p
s0 −α0 α1 + α0 α2 t q + α0

p p

s1 α0 + 2α1 −α1 α2 + 2α1 −t q p− 2α1
q + t

q2

s2 α0 α1 + α2 −α2 t q + α2
p−1 p

π α2 α1 α0 −t −q 1− p

We remark that the Bäcklund transformations of the Hamiltonian system
(HIII) can also be described in terms of an extension of the affine Weyl group
W (A(1)

1 ) ×W (A(1)
1 ). In this paper, however, we make use of W (C(1)

2 ) for con-
venience, since it is directly related to the description of the manifold EIII,α

given in the next section.

2.3 The case of J = IV

A
(1)
2 : c

c
cα1

α0
α2©© HH (α0 + α1 + α2 = 1) A =




2 −1 −1
−1 2 −1
−1 −1 2




W (A(1)
2 ) = 〈s0, s1, s2〉 : s2

0 = s2
1 = s2

2 = 1, (s0s1)3 = (s1s2)3 = (s2s0)3 = 1.

W̃ (A(1)
2 ) = 〈s0, s1, s2, π〉 :

s2
0 = s2

1 = s2
2 = 1, (s0s1)3 = (s1s2)3 = (s2s0)3 = 1,

π3 = 1, πs0 = s1π, πs1 = s2π, πs2 = s0π.

α0 α1 α2 q p

s0 −α0 α1 + α0 α2 + α0 q + 2α0
p−q−2t p + 2α0

p−q−2t

s1 α0 + α1 −α1 α2 + α1 q p− 2α1
q

s2 α0 + α2 α1 + α2 −α2 q + 2α2
p p

π α1 α2 α0 −p −p + q + 2t

2.4 The case of J = V

A
(1)
3 : c

c
c cα1

α0
α3

α2

©© HH (α0+α1+α2+α3 = 1) A =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




W (A(1)
3 ) = 〈s0, s1, s2, s3〉 : s2

i = 1, (sisi+2)2 = 1, (sisi+1)3 = 1.

W̃ (A(1)
3 ) = 〈s0, s1, s2, s3, π〉 :

s2
i = 1, (sisi+2)2 = 1, (sisi+1)3 = 1,

π4 = 1, πsi = si+1π. (i ∈ Z/4Z)
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α0 α1 α2 α3 q p
s0 −α0 α1 + α0 α2 α3 + α0 q + α0

p+t p

s1 α0 + α1 −α1 α2 + α1 α3 q p− α1
q

s2 α0 α1 + α2 −α2 α3 + α2 q + α2
p p

s3 α0 + α3 α1 α2 + α3 −α3 q p− α3
q−1

π α1 α2 α3 α0 −p
t (q − 1)t

2.5 The case of J = V I

D
(1)
4 : c

c c c
cα0

α1

α2

α4

α3H ©© H (α0+α1+2α2+α3+α4 = 1) A =




2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2




W (D(1)
4 ) = 〈s0, s1, s2, s3, s4〉 : s2

i = s2
2 = 1, (sisj)2 = 1, (sis2)3 = 1.

W̃ (D(1)
4 ) = 〈s0, s1, s2, s3, s4, σ01|34, σ03|14, σ04|13〉 :

s2
i = s2

2 = 1, (sisj)2 = 1, (sis2)3 = 1, (i, j 6= 2)
σ01|34(s0, s1, s2, s3, s4) = (s1, s0, s2, s4, s3)σ01|34,

σ03|14(s0, s1, s2, s3, s4) = (s3, s4, s2, s0, s1)σ03|14,

σ04|13(s0, s1, s2, s3, s4) = (s4, s3, s2, s1, s0)σ04|13.

The Diagram automorphisms σ01|34, σ03|14, σ04|13 generate the Klein group of
order 4.

α0 α1 α2 α3 α4 q p
s0 −α0 α1 α2 + α0 α3 α4 q p− α0

q−t

s1 α0 −α1 α2 + α1 α3 α4 q p
s2 α0 + α2 α1 + α2 −α2 α3 + α2 α4 + α2 q + α2

p p

s3 α0 α1 α2 + α3 −α3 α4 q p− α3
q−1

s4 α0 α1 α2 + α4 α3 −α4 q p− α4
q

σ01|34 α1 α0 α2 α4 α3
t(t−1)

q−t + t − (q−t)((q−t)p+α2)
t(t−1)

σ03|14 α3 α4 α2 α0 α1
t
q − q(qp+α2)

t

σ04|13 α4 α3 α2 α1 α0 − t−1
q−1 + 1 (q−1)((q−1)p+α2)

t−1

2.6 Propositions

Recall the definition of the manifold EW
J,α by gluing the copies C2

w×BJ,w, w ∈
W of C2×BJ via the identification determined by the Bäcklund transformations.
We first give a proposition concerning the extension of the domain of definition,
which will be used in the proof of Theorem 1.
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We see that the Hamiltonian system

δqw = {HJ(qw, pw, tw, w(α)), pw}, δpw = {HJ(qw, pw, tw, w(α)), qw}

on C2
w ×BJ,w is changed to the Hamiltonian system

δqws = {HJ(qws, pws, tws, ws(α)), pws}, δpws = {HJ(qws, pws, tws, ws(α)), qws}

on C2
ws × BJ,ws, where w ∈ W and s is a generator of W . Let us denote by

Dw,ws ⊂ C2
ws × BJ,ws the divisor defined as the complement of C2

w × BJ,w:
Dw,ws = C2

ws×BJ,ws−C2
w×BJ,w. We notice that Dw,ws can be an empty set.

Then we have

Proposition 2.1. In the case of J 6= V I, every divisor Dw,ws is transversal
to leaves. In the case of J = V I, every divisor Dw,ws (s 6= s2) is transversal to
leaves, however the divisor Dw,ws2 (w(α2) 6= 0) is invariant with respect to the
foliation if w(α1) = 0.

Proof. The proposition is verified by observing the Hamiltonian system on
C2

ws×BJ,ws. For example, consider first the case of J = II, s = s1. Since qw =
qws − w(α1)/pws, pw = pws, we have Dw,ws = {pws = 0} if w(α1) 6= 0. (Notice
that if w(α1) = 0, then Dw,ws = ∅.) By δpws = {HII(qws, pws, t, ws(α)), pws}
and {HII(qws, pws, t, ws(α)), pws}|pws=0 = −w(α1), we see that Dw,ws is transver-
sal to leaves. We consider next the case of J = V I, s = s2. In the case, we have
Dw,ws = {pws = 0} if w(α2) 6= 0, δpws = {HV I(qws, pws, t, ws(α)), pws}, and
{HV I(qws, pws, t, ws(α)), pws}|pws=0 = w(α2)w(α1), and then we obtain the last
assertion.

The following proposition will also be used in the proof of Theorem 1.

Proposition 2.2. In the case of J 6= V I, for any α, there is a w ∈ W such
that w(αi) 6= 0 for all i. In the case of J = V I, for any α, there is a w ∈ W
such that w(α1 + α2) 6= 0 and w(αi) 6= 0 for all i.

Proof. This fact follows from the actions of translation operators contained
in the affine Weyl group W with respect to the root lattice.

3 The manifolds EJ,α

In this section, we give descriptions of the manifolds EJ,α, Hamiltonians on
all charts of the manifolds, a proposition which will be used in the proof of
Theorem 1.

3.1 Descriptions of EJ,α

The manifolds Eα = EJ,α for J = II, ..., V I are described by gluing C2×BJ 3
(q, p, t) and a finite number copies C2

i × BJ 3 (xi, yi, t) of C2 × BJ via the
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following birational symplectic transformations:

q = 1/x0, p− 2q2 − t = x0(−α0 − x0y0),
q = 1/x1, p = x1(−α1 − x1y1)

for J = II;

q = 1/x0, p = x0(−α0 − x0y0),

q = x1, p = y1 +
2α1

x1
− t

x2
1

,

q = 1/x2, p = 1 + x2(−α2 − x2y2)

for J = III;

q = 1/x0, p− q − 2t = x0(−2α0 − x0y0)
q = y1(2α1 − x1y1), p = 1/y1,

q = 1/x2, p = x2(−2α2 − x2y2)

for J = IV ;

q = 1/x0, p + t = x0(−α0 − x0y0),
q = y1(α1 − x1y1), p = 1/y1,

q = 1/x2, p = x2(−α2 − x2y2),
q − 1 = y3(α3 − x3y3), p = 1/y3

for J = V ;

q − t = y0(α0 − x0y0), p = 1/y0,

q = 1/x2, p = x2(−α2 − x2y2),
q − 1 = y3(α3 − x3y3), p = 1/y3,

q = y4(α4 − x4y4), p = 1/y4,

q = 1/[y12(α1 − x12y12)], p = −y12(α1 − x12y12)(α1 + α2 − x12y12)

for J = V I.
We remark that the Hamiltonians HJ (q, p, t, α) (J 6= III) in this paper are

obtained from those HJ (λ, µ, t, κ) in [2] by the following change of variables and
constants:

λ = q, µ = p, α = α1 − 1/2

for J = II;
λ = q, µ = p/2, κ0 = α1, κ∞ = −α2
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for J = IV ;

(λ− 1)(q − 1) = 1, (λ− 1)µ + (q − 1)p = −α2,

κ0 = α1, κt = −(α1 + 2α2 + α3), κ∞ = α3, η = −1

for J = V ;

λ = q, µ = p, κ0 = α4, κ1 = α3, κt = α0, κ∞ = α1

for J = V I and HIII(q, p, t, α) is obtained from HIII′(λ, µ, t, κ) in [2] by

λ = t/q, µ = −q(qp + α0)/t,

κ0 = −2(α0 + α1), κ∞ = 2α1, η0 = η∞ = 1.

3.2 Hamiltonians on the other charts

Hamiltonians Hi = HJ,i(xi, yi, t, α) on the charts C2
i ×BJ 3 (xi, yi, t) of the

manifolds EJ,α are of the following forms, where x, y are used instead of xi, yi:

H0 =
1
2
x4y2 +

(
α0x

3 − 1
2
tx2 − 1

)
y +

1
2
α2

0x
2 − 1

2
α0tx,

H1 =
1
2
x4y2 +

(
α1x

3 +
1
2
tx2 + 1

)
y +

1
2
α2

1x
2 +

1
2
α1tx

for J = II;

H0 = x2y2 + [−tx2 + (α0 − α2)x + 1]y − α0tx,

H1 = x2y2 + [−x2 + (α0 + 4α1 + α2)x− t]y − (α0 + 2α1)x,

H2 = x2y2 + [−tx2 + (−α0 + α2)x− 1]y − α2tx

for J = III;

H0 = x3y2 + [(4α0 + 2α1)x2 − 2tx− 1]y + 4α0(α0 + α1)x,

H1 = −x2y3 + (4α1 + 2α2)xy2 + [2tx− 4α1(α1 + α2)]y − x,

H2 = x3y2 + [(4α2 + 2α1)x2 + 2tx + 1]y + 4α2(α1 + α2)x

for J = IV ;

H0 = (−x3 + x2)y2 + [−(2α0 + α1)x2 + (−t + 2α0 + α1 + α3)x + t]y − α0(α0 + α1)x,

H1 = tx2y3 + [x2 − (2α1 + α2)tx]y2 + [(t− α1 + α3)x + α1(α1 + α2)t]y + x,

H2 = (−x3 + x2)y2 + [−(α1 + 2α2)x2 + (t + α1 + 2α2 + α3)x− t]y − α2(α1 + α2)x,

H3 = tx2y3 + [x− (α2 + 2α3)t]xy2 + [(−t + α1 − α3)x + α3(α2 + α3)t]y − x

10



for J = V ;

H0 = −x3y4 + (3α0 + α1 + 2α2)x2y3

+[(2t− 1)x− (3α2
0 + 2α0α1 + 4α0α2 + α1α2 + α2

2)]xy2

+{[−(4α0 + 2α1 + 4α2 + α3 + α4)t + (2α0 + α1 + 2α2 + α3)]x
+α0(α0 + α2)(α0 + α1 + α2)}y
−t(t− 1)x,

H2 = x(x− 1)(tx− 1)y2

−[(α0 − 1)tx(x− 1) + α1(x− 1)(tx− 1) + α3x(tx− 1)]y
+α2(α2 + α4)tx,

H3 = −x3y4 + (α1 + 2α2 + 3α3)x2y3

−[(t− 2)x + (α1α2 + 2α1α3 + α2
2 + 4α2α3 + 3α2

3)]xy2

+{[(α3 − α4)t− (α1 + 2α2 + 3α3)]x + α3(α2 + α3)(α1 + α2 + α3)}y
+(t− 1)x,

H4 = −x3y4 + (α1 + 2α2 + 3α4)x2y3

−[(t + 1)x + (α1α2 + 2α1α4 + α2
2 + 4α2α4 + 3α2

4)]xy2

+{[(α4 − α3)t + (α1 + 2α2 + α3 + 2α4)]x + α4(α2 + α4)(α1 + α2 + α4)}y
−tx,

H12 = −tx3y4 + (3α1 + 2α2 + α4)tx2y3

−[(t + 1)x + (3α2
1 + 4α1α2 + 2α1α4 + α2

2 + α2α4)t]xy2

+{[(2α1 + 2α2 + α3 + α4)t + (α1 − α3)]x + α1(α1 + α2)(α1 + α2 + α4)t}y
−x

for J = V I.

3.3 A proposition

We study here if the leaf passing through a point on a divisor at infinity of
the original chart intersects the original chart.

We notice that EJ,α is a disjoint union of the original chart C2×BJ 3 (q, p, t)
and a finite number of divisors:

EJ,α = (C2 ×BJ)
⊔( ⊔

i

Di

)
,

where
Di := {(xi, yi, t) ∈ C2

i ×BII | xi = 0} i = 0, 1

for J = II;

Di := {(xi, yi, t) ∈ C2
i ×BIII | xi = 0} i = 0, 1, 2

11



for J = III;

Di : = {(xi, yi, t) ∈ C2
i ×BIV | xi = 0} i = 0, 2,

D1 : = {(x1, y1, t) ∈ C2
1 ×BIV | y1 = 0}

for J = IV ;

Di : = {(xi, yi, t) ∈ C2
i ×BV | xi = 0} i = 0, 2,

Di : = {(xi, yi, t) ∈ C2
i ×BV | yi = 0} i = 1, 3

for J = V ;

Di : = {(xi, yi, t) ∈ C2
i ×BV I | yi = 0} i = 0, 3, 4, 12

D2 : = {(x2, y2, t) ∈ C2
2 ×BV I | x2 = 0}

for J = V I.
We can verify the following proposition by observing the Hamiltonian sys-

tems in the neighborhoods of the above divisors.

Proposition 3.1. In the case of J 6= V I, every leaf P (Q; t), t ∈ BJ passing
through a point Q ∈ Di instantly enters into the original chart C2×BJ , namely,
P (Q; t) ∈ C2 ×BJ for every t with 0 < |t− πJ(Q)| << 1.

In the case of J = V I, we have
(i) every leaf passing through a point in Di, i = 0, 3, 4 instantly enters into

the original chart,
(ii) if α1 6= 0, every leaf passing through a point in Di, i = 2, 12 instantly

enters into the original chart,
(iii) if α1 = 0, every leaf passing through a point in D12(x12 6= 0) also

enters into the original chart, however every leaf passing through a point on
D2tD12(x12 = 0) stays in it and a leaf passing through a point on D12(x12 = 0)
instantly enters into D2. Here D12(∗) denotes a subset of D12 satisfying the
condition *.

4 Proof of Theorem 2

We prove the assertion in the case of J = V I only. The other cases can be
verified similarly. Notice that the left-hand side of the relation in the theorem
for J = V I is C2 × BV I t {qs0 − t = 0} t {ps2 = 0} t {qs3 − 1 = 0} t {qs4 =
0} t {qs1s2 = 0} and the right-hand side EV I,α is C2 ×BV I t {y0 = 0} t {x2 =
0} t {y3 = 0} t {y4 = 0} t {y12 = 0} as sets.

We first observe the relation between the chart C2
s0
× BV I of the left-hand

side and the chart C2
0 ×BV I of EV I,α. We have

qs0 − t = y0(α0 − x0y0), ps0 = − x0

α0 − x0y0
,
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or
x0 = −ps0 [α0 + (qs0 − t)ps0 ], y0 =

qs0 − t

α0 − x0y0
.

Then we see that, if α0 6= 0, the divisor {qs0 − t = 0} corresponds biholomor-
phically to the divisor {y0 = 0} in EV I,α.

By the same way, we can verify that the divisors {ps2 = 0}, {qs3 − 1 = 0},
{qs4 = 0}, {qs1s2 = 0} correspond biholomorphically to those {x2 = 0}, {y3 =
0}, {y4 = 0}, {y12 = 0} respectively. For example, the relation between the
chart C2

s1s2
×BV I of the left-hand side and the chart C2

12 ×BV I of EV I,α is as
follows:

qs1s2 = −y12(α1 − x12y12)(α1 + α2 − x12y12),

ps1s2 = − x12

(α1 − x12y12)(α1 + α2 − x12y12)
,

or

x12 = −ps1s2(α1 − qs1s2ps1s2)(α1 + α2 − qs1s2ps1s2),

y12 = − qs1s2

(α1 − qs1s2ps1s2)(α1 + α2 − qs1s2ps1s2)
.

Thus we have obtained Theorem 2.

5 Proof of Theorem 1 – for J = II, III, IV, V

5.1 Extension of φ and φw

We first prove that the identity mapping φ can be extended to an embedding
ϕ from EW

J,α into EJ,α, where embedding means injective holomorphic mapping
preserving fibers and leaves of the foliations. The assertion is easily verified
by step by step procedure from C2

w × BJ,w to C2
wsi

× BJ,wsi if the following
fundamental proposition is established, because the divisor Dw,wsi in C2

wsi
×

BJ,wsi which does not intersect C2
w×BJ,w is transversal to leaves by Proposition

2.1 in the case of J 6= V I.

Proposition 5.1. Let w ∈ W and ϕ : C2
w × BJ,w → EJ,α be an embed-

ding. If the divisor Dw,ws is transversal to leaves, then ϕ can be extended to an
embedding from C2

ws ×BJ,ws into EJ,α for every generator s of W .
Proof. We only verify the proposition in the case where J = V, s = s2. We

suppose w(α2) 6= 0 in order that Dw,ws 6= ∅. The other cases can be shown
quite similarly.

We notice that tw = t for any w ∈ W in the present case. Since qws =
qw +w(α2)/pws, pws = pw, namely qw = qws−w(α2)/pws, pw = pws, the divisor
Dw,ws is {pws = 0}, and it is transversal to leaves because w(α2) 6= 0. By the
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hypothesis of the proposition, ϕ is defined for (qws, pws, t) ∈ C2
ws×BV −{pws =

0}. Therefore we have to define ϕ for every (qws, pws, t) = (q, 0, t).
Let (qws(t), pws(t), t) be the leaf passing through the point (q, 0, t). Since

pws(t) 6= 0 for any 0 < |t− t| << 1, P (qws(t), pws(t), t) := ϕ(qws(t), pws(t), t) ∈
EV,α is defined for 0 < |t − t| << 1. On the other hand, since the foliation of
EV,α is uniform, the limit point P (qws(t), pws(t), t) ∈ EV,α exists. We define the
point as ϕ(q, 0, t).

We can easily verify that the ϕ thus defined is injective.
What we have to prove is holomorphy of ϕ. We show it by using pws as

a local parameter of leaves in stead of t. Take a point (q0, 0, t0) ∈ C2
ws × BV

arbitrarily and fix it. In the system tdqws/dt = ∂HV (qws, pws, t, ws(α))/∂pws,
tdpws/dt = −∂HV (qws, pws, t, ws(α))/∂qws, we notice that the right-hand side
on the second equation takes the value w(α2)t 6= 0 on pws = 0. Therefore the
system is equivalent to the system

(5.1)
dt

dpws
=

1
w(α2)

+ pwsO(1),
dqws

dpws
= O(1),

where O(1) denotes a function of qws, pws, t holomorphic and bounded in a
neighborhood of (qws, pws, t) = (q0, 0, t0). Denote by t(q, pws, t), qws(q, pws, t)
the solution of (5.1) satisfying the initial condition t(0) = t, qws(0) = q. Let
Gρ0 = {(q, pws, t) ∈ C2 × BV | |q − q0|, |pws|, |t − t0| < ρ0}. It is easy to see
that if ρ0 > 0 is sufficiently small then the mapping f0 from Gρ0 to f0(Gρ0) ⊂
C2

ws ×BV defined by (qws(q, pws, t), pws, t(q, pws, t)) is biholomorphic. We take
the system (q, pws, t) ∈ Gρ0 as a coordinate system of a neighborhood of the
point (q0, 0, t0) ∈ C2

ws×BV . In the coordinate system, (q1, p1, t1) and (q2, p2, t2)
are on the same leaf if and only if (q1, t1) = (q2, t2).

Now we show the holomorphy of ϕ ◦ f0 : Gρ0 → EV,α, which is simply
denoted by ϕ.

Let B′ ⊂ BV be a simply connected domain and F ′ be the restriction of the
foliation FV,α of EV,α on E′ := π−1

V (B′). Denoting by P (Q; t), t ∈ B′ the leaf
passing through the point Q ∈ E′, we recall the following facts:

(i) P (Q; t) is holomorphic in (Q, t) ∈ E′.
(ii) If Q1, Q2 ∈ E′ are on the same leaf of F ′, then P (Q1; t) = P (Q2; t) for

any t ∈ B′.
We fist notice that ϕ(q, p′, t) = ϕ(qws(q, p′, t), p′, t(q, p′, t)) is holomorphic in

(q, t) for any fixed p′ with 0 < |p′| < ρ0. We next verify

ϕ(q, pws, t) = P (ϕ(q, p′, t); t(q, pws, t)).

Since the right-hand side does not depend on the choice of p′ 6= 0, we obtain
the equality for pws 6= 0 by putting p′ = pws. The equality for pws = 0 follows
from the above definition of ϕ for (q, 0, t) ∈ C2

ws × BV . From these and the
above facts (i) and (ii), it follows that ϕ is holomorphic in Gρ0 . Thus we have
completed the proof of Proposition 5.1.
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By the same way as above, we obtain that, for any w ∈ W , the mapping
φw from (qw, pw, tw) ∈ C2

w × BJ,w ⊂ EW
J,α to (q, p, t) ∈ C2 × BJ ⊂ EJ,w(α)

defined by (q, p, t) = (qw, pw, tw) can be extended to an embedding from EW
J,α

into EJ,w(α):
ϕw(EW

J,α) ⊂ EJ,w(α), w ∈ W.

5.2 Surjectivity of ϕ and ϕw

In the preceding subsection, we have shown that

ϕ(EW
J,α) ⊂ EJ,α ϕw(EW

J,α) ⊂ EJ,w(α) w ∈ W.

If we take w ∈ W so that w(αi) 6= 0 for all i by Proposition 2.2, then by
Theorem 2 we have

ϕw(EW
J,α) ⊃ ϕw(C2 ×BJ t

(tiC2
wsi

×BJ,wsi

) / ∼) = EJ,w(α),

namely ϕw : EW
J,α → EJ,w(α) is surjective and then is an isomorphism. Therefore

the foliation of EW
J,α is uniform, because that of EJ,w(α) is uniform.

On the other hand, EJ,α = C2×BJt(tiDi) and every leaf passing through a
point on Di instantly enters into the original chart (Proposition 3.1). Therefore,
by the same argument as in the proof of Proposition 5.1, we have ϕ(EW

J,α) =
EJ,α.

Similarly, we can obtain ϕw(EW
J,α) = EJ,w(α) for every w ∈ W , which com-

pletes the proof of Theorem 1 for J = II, III, IV, V .

6 Proof of Theorem 1 – for J = V I

In the case of J = V I, the divisors Dw,ws2 in EW
J,α and D2 in EV I,α can be

invariant with respect to the foliations, and then more precise study than that
in the preceding section is needed.

6.1 Extension of φ and φw

We prove here that φ can be extended to an embedding ϕ from EW
V I,α into

EV I,α : ϕ(EW
V I,α) ⊂ EV I,α.

Since the divisors Dw,ws (s 6= s2) are transversal to leaves by Proposition
2.1, we have only to show that for every w of the form

(6.1) w = w′ns2w
′
n−1s2 · · ·w′1s2, w′1, ..., w

′
n ∈ W ′, w′1, ..., w

′
n−1 6= e

φ can be extended to an embedding from C2
w ×BV I into EV I,α, where

W ′ :=< s0, s1, s3, s4 > .
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We prove it by induction with respect to n in an expression (6.1) by using
the following three propositions, in which we need auxiliary coordinate systems
(xw, yw, t) (w ∈ W ) defined by

xw = w(x2) = w(1/q), yw = w(y2) = w(q(−α2 − qp)).

We also introduce a symbol δw′i for w′ ∈ W ′, i = 0, 1, 3, 4 defined as follows:
δw′i = 1 if si is a factor of w′ and δw′i = 0 otherwise.

We first give and prove the propositions.

Proposition 6.1. Suppose that ww′(α2) 6= 0, ww′(α1) = 0 where w ∈
W,w′ ∈ W ′. Then {(qww′s2 , pww′s2 , t) ∈ C2×BV I | pww′s2 = 0} = {(xw, yw, t) ∈
C2 ×BV I | xw = 0}.

proof. We obtain the relation of (qww′s2 , pww′s2 , t) and (xw, yw, t). Since

w′(p) = p− δw′0α0

q − t
− δw′3α3

q − 1
− δw′4α4

q
,

qw = 1/xw, pw = xw(−w(α2)− xwyw),

we have

pww′s2 = ww′s2(p) = ww′(p)

= pw − w(δw′0α0)
qw − t

− w(δw′3α3)
qw − 1

− w(δw′4α4)
qw

= xw(−w(α2)− xwyw)− w(δw′0α0)xw

1− txw
− w(δw′3α3)xw

1− xw
− w(δw′4α4)xw

= −xw{w(α2 + δw′0α0 + δw′3α3 + δw′4α4)
+xw[yw + w(δw′0α0)t + w(δw′3α3)] + O(x2

w)},
where O(x2

w) denotes a function holomorphic in (xw, yw, t) in a neighborhood
of xw = 0, having x2

w as a factor. If δw′1 = 0, then

w(α2 + δw′0α0 + δw′3α3 + δw′4α4) = w(w′(α2)).

If δw′1 = 1, then

w(α2 + δw′0α0 + δw′3α3 + δw′4α4)
= w(α2 + δw′0α0 + δw′3α3 + δw′4α4)− ww′(α1) = w(w′(α2)),

since ww′(α1) = 0 by the assumption of the proposition. Hence we have

pww′s2 = −xw{ww′(α2) + xw[yw + w(δw′0α0)t + w(δw′3α3)] + O(x2
w)}.

We have also an expression of qww′s2 as a function of (xw, yw, t) as follows:

qww′s2 = ww′s2(q) = ww′(q +
α2

p
) = qw +

ww′(α2)
pww′s2
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=
1

xw
− ww′(α2)

xw{ww′(α2) + xw[yw + w(δw′0α0)t + w(δw′3α3)] + O(x2
w)}

=
yw + w(δw′0α0)t + w(δw′3α3) + O(xw)

ww′(α2) + xw[yw + w(δw′0α0)t + w(δw′3α3)] + O(x2
w)

.

Then we obtain Proposition 6.1.

Proposition 6.2. Suppose that ww′(α2) 6= 0 where w ∈ W,w′ ∈ W ′. Then
{(xww′s2 , yww′s2 , t) ∈ C2 × BV I | xww′s2 = 0} = {(qww′ , pww′ , t) ∈ C2

ww′ ×
BV I | pww′ = 0}.

Proof. From

qww′ = qww′s2 −
ww′(α2)
pww′s2

, pww′ = pww′s2 ,

qww′s2 =
1

xww′s2

, pww′s2 = xww′s2(ww′(α2)− xww′s2yww′s2),

it follows that

qww′ = − yww′s2

ww′(α2)− xww′s2yww′s2

,

pww′ = xww′s2(ww′(α2)− xww′s2yww′s2),

which shows the proposition.

Proposition 6.3. Suppose that ww′2s2w
′
1(α1) = ww′2(α2) = 0 where w ∈

W,w′1, w
′
2 ∈ W ′. Then ww′2(α1) = 0 and {(xww′2s2w′1s2 , yww′2s2w′1s2 , t) ∈ C2 ×

BV I | xww′2s2w′1s2 = 0} = {(xww′2s2 , yww′2s2 , t) ∈ C2 ×BV I | xww′2s2 = 0}.
Proof. First notice that ww′2(α1) = 0 follows from ww′2(α2) = 0 and

ww′2(α1 + α2) = ww′2s2(α1) = ±ww′2s2w
′
1(α1) = 0.

Next we obtain the relation between (xww′2s2w′1s2 , yww′2s2w′1s2 , t) and (xww′2s2 , yww′2s2 , t).
We have

xww′2s2w′1s2 =
1

qww′2s2w′1s2

, yww′2s2w′1s2 = −q2
ww′2s2w′1s2

pww′2s2w′1s2 ,

qww′2s2 =
1

xww′2s2

, pww′2s2 = −x2
ww′2s2

yww′2s2 ,

and

qww′2s2w′1s2 = qww′2s2 ,

pww′2s2w′1s2 = pww′2s2 −
ww′2s2(δw′10α0)

qww′2s2 − t
− ww′2s2(δw′13α3)

qww′2s2 − 1
− ww′2s2(δw′14α4)

qww′2s2

,
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by the assumptions of the proposition. Then, noting again the assumptions, we
have

xww′2s2w′1s2 = xww′2s2 ,

yww′2s2w′1s2 = yww′2s2 + ww′2s2(δw′10α0)t + ww′2s2(δw′13α3) + O(xww′2s2),

which proves the proposition.

Now we prove the assertion of this subsection by induction. Suppose that
φ is extended to an embedding from C2

w × BV I into EV I,α for every w of the
form (6.1) with n ≤ m− 1. Let w be any element expressed as (6.1) where n is
replaced by m. We can suppose w′ms2 · · ·w′2s2w

′
1(α2) 6= 0, which is the condition

for a new divisor to appear. We can also suppose that w′ms2 · · ·w′2s2w
′
1(α1) = 0,

because if not the appearing divisor is transversal to leaves. We see that the
appearing divisor {qw ∈ C, pw = 0} is equal to {xw′ms2···w′2s2 = 0, yw′ms2···w′2s2 ∈
C} by Proposition 6.1. Assume that there exists k ≥ 2 such that

w′ms2 · · ·w′k(α2) 6= 0

and let l be the least of such k’s. Then by using Proposition 6.3 repeatedly, we
obtain that {qw ∈ C, pw = 0} is equal to {xw′ms2···w′ls2 ∈ C, yw′ms2···w′ls2 = 0},
which is equal to {qw′ms2···w′l ∈ C, pw′ms2···w′l = 0} by Proposition 6.2. Since φ is
extended to the chart C2

w′ms2···w′l+1s2
× BV I by the assumption of induction, it

is also extended to the chart C2
w′ms2···w′l+1s2w′

l
× BV I because w′l ∈ W ′. If such

k does not exist, we see that {qw ∈ C, pw = 0} is equal to {x2 = 0, y2 ∈ C},
which is just the divisor D2 in EV I,α. Thus we have proved φ is extended to an
embedding from EW

V I,α into EV I,α.

We notice that the assertion for general φw is also obtained.

6.2 Surjectivity of ϕ and ϕw

We show that ϕ(EW
V I,α) = EV I,α, namely all divisors Di, i = 0, 2, 3, 4, 12 are

included in ϕ(EW
V I,α).

Take w so that none of w(αi) and w(α1 + α2) vanish by Proposition 2.2.
Then, by Theorem 2, ϕw : EW

V I,α → EJ,w(α) is surjective, namely, an isomor-
phism. Then the foliation of EW

V I,α is uniform because that of EV I,w(α) is
uniform. On the other hand, every leaf passing through a point on the divisors
Di, i = 0, 3, 4 instantly enters into the original chart by Proposition 3.1, and then
we can verify that these divisors are included in ϕ(EW

V I,α) by the same argument
as in the proof of Proposition 5.1. We can also verify that D2, D12 ⊂ ϕ(EW

V I,α)
if α1 6= 0 and D12(x12 6= 0) ⊂ ϕ(EW

V I,α) if α1 = 0. Note that every leaf passing
through a point in D12(x12 = 0) instantly enters into D2 in the case of α1 = 0.
Therefore we have only to study the divisor D2 in the case of α1 = 0.
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If α2 6= 0, then ϕ(De,s2) = D2 where De,s2 = {ps2 = 0}. Then we study the
remaining case α2 = α1 = 0. In this case, at least one of αi, i = 0, 3, 4 is not
equal to 0 since α0 + α1 + 2α2 + α3 + α4 = 1.

The case α0 6= 0. We can verify that

x2 = − ps0s2

α0 − qs0s2ps0s2

, y2 =
(α0 − qs0s2ps0s2)

2(qs0s2 − t)
α0 + tps0s2 − qs0s2ps0s2

,

which shows that ϕ(Ds0,s0s2) = D2 where Ds0,s0s2 = {ps0s2 = 0}.
The case α3 6= 0. Since

x2 = − ps3s2

α3 − qs3s2ps3s2

, y2 =
(α3 − qs3s2ps3s2)

2(qs3s2 − 1)
α3 + ps3s2 − qs3s2ps3s2

,

ϕ(Ds3,s3s2) = D2 where Ds3,s3s2 = {ps3s2 = 0}.
The case α4 6= 0. Since

x2 = − ps4s2

α4 − qs4s2ps4s2

, y2 = qs4s2(α4 − qs4s2ps4s2),

ϕ(Ds4,s4s2) = D2 where Ds4,s4s2 = {ps4s2 = 0}.
Thus we have proved ϕ is surjective and then is an isomorphism. By the

same way, we can prove that φw is extended to an isomorphism ϕw from EW
J,α

to EJ,w(α) for every w ∈ W .
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unpublished lecture note.

2. Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M., From Gauss to
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6. Noumi, M., Painlevé equations, Asakura Shoten, Tokyo, 2000 (in Japanese).

19



7. Noumi, M. and Yamada, Y., Affine Weyl groups, discrete dynamical sys-
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