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Abstract. For each Painlevé system, we have a manifold, called the
defining manifold, on which the system defines a uniform foliation. In
this paper, we describe confluence processes in these manifolds as defor-

mations of manifolds compatible to those in Painlevé systems.

1. Introduction. The purpose of this paper is to describe confluence pro-
cesses in the defining manifolds for Painlevé systems, namely, to show a hierarchy
of these manifolds.

Each Painlevé equation P; (J = VI, V,....I) is equivalent to a Hamiltonian
system (Hy) : dz/dt = 0H;/dy, dy/dt = —0H j/0x, where H; is a polynomial of
x and y whose coefficients are rational functions of t. Thus the Hamiltonian system
(Hy) is called the J-th Painlevé system.

For each Painlevé system, there is a manifold E;, called the defining manifold
for the J-th Painlevé system, on which the system defines a uniform foliation. The
manifold F; is a fiber space over the t-space By = P — {the fixed singular points}
(P denotes the complex projective line), containing as a fiber subspace the trivial
fiber space C? x B;(> (z,y,t)) on which the system (H;) defines a nonsingular
foliation. It should be noted that the foliation on C? x B;(> (w,y,t)) is not
uniform because the solution of (H ;) may have movable singularities, but that on
E; is uniform, namely, (i) every leaf is transversal to fibers, (ii) for every Py €
Ej, any curve in By with the starting point m;(FPy) (7; denotes the projection
from E; onto Bj) can be lifted on the leaf passing through the point Py ([4]).
Each fiber E;(t) over t € By, called the space of initial conditions, consists of
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mutually disjoint C? and several divisors each of which is isomorphic to C ([4]).
The manifold E; (J # I) is described as a patching of several copies of C? x B by
certain birational and symplectic identifications, and the Hamiltonian on each chart
Vi(x) = C2x By > (z(*),y(),t) is a polynomial of z(x) and y(x) whose coefficients
are rational functions of ¢ holomorphic in By ([6],[7]). The Hamiltonian system
defined on the whole manifold E; is called the extended J-th Painlevé system. Note
that the space of initial conditions is not compact, but there is no other Hamiltonian
system holomorphic on E; and meromorphic on some compactification of £ ; than
the extended J-th Painlevé system ([6],[8]).

On the other hand, we know certain confluence processes in Painlevé systems
([1]). Thus it is natural to ask if there exist confluence processes in the defining
manifolds F';’s compatible to those in Painlevé systems. In this paper, we establish
them as deformations of manifolds.

This paper is organized as follows. Section 2 is devoted to some preliminaries
which are relevant to state and prove our results. The main results of this paper

are given in Section 3, and proved in the following sections.

2. Preliminaries. In this section, we recall some known facts and recall a
lemma which is used in the proofs of our results.

2.1. We first review the forms of the Hamiltonian functions for Painlevé systems

([1):

Hy(z,y,t) ~=1 [2(z = 1) (= = t)y* — {ko(z — 1)(z — t)
+r1x(x —t) + (ke — Dx(z — 1)}y + w(x — t)]

(K ::i[(ﬁo + k1 + ke — 1) — k7)),

1
Hy (2,y,t) == [z(z = 1)%y" = {ro(x = 1)” + mew(z — 1) = nta}y + r(z — 1)]
1
(k 221{(/% +he)® = K2},
Hry(z,y,t) =22y% — {2 + 2t + 2k0 }Y + Koo,

1 1
Hirp(z,y,t) Z;[CL’Q?JQ — {Noo®® + Koz — Mot }y + 57700(’?0 + Koo )Z],
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1
HIII(ZC7 Y, t) :¥[2$2y2 - {2noot$2 + (2K0 + 1)33 - 2770t}y + 7700(“0 + ’foo)t'r]a
1 t 1
23/2 — (2* + 5)&1 — (a+ 5)33,

1
Hi(z,y,t) :§y2 — 227 — tx.

H][(.CC y,t) =

Here x,y, and ¢ are variables and the other Greek letters stand for complex con-

stants.

2.2. We next give descriptions of the defining manifolds E;’s (J # I) ([6],[7]).
In the following, we distinguish several coordinate systems by labels such as 00,000,100
and so on. The coordinate system (z(00),y(00),t) = (x,y,t) is the original one of
V(00) x By = C? x By on which the Hamiltonian system (H ) is defined. We note
that (z(000),y(0c0)), for example, is a coordinate system which is appropriate to

observe a 1-parameter family of leaves passing through the point (z,y) = (0, 00).

2.2.1. The manifold Fy for the VI-th Painlevé system is obtained by glueing
six copies V(x) x By > (z(*),y(x),t) of C? x By via the following symplectic

identifications:
2(00) = y(000)(Ko — (000)y(000)),  y(00) =1/y(0c0),
2(00) =1+ y(loo)(k1 — z(loo)y(loo)), y(00) =1/y(1o0),
2(00) = t + y(too)(k — z(too)y(too)), y(00) = 1/y(too),
2(00) = 1/2(000+), y(00) = z(000+)(k(+) — x(000+)y(c00+)),
2(000+) = y(000—) (Koo — 2(000—)y(000-)), y(000+) = 1/y(cc0-),

)
(k

where
By =C—{0,1}, k(+)=(ko+r1+kt—1+k)/2,

and V' (00) x By is the original space on which the Hamiltonian function Hy (z,y, t)
is defined.

2.2.2. The manifold Fy for the V-th Painlevé system in the case n # 0 is
obtained by glueing five copies V(¥) x By > (x(x),y(x),t) of C? x By via the

following symplectic identifications:
2(00) = y(000)(ko — (000)y(000)),  y(00) =1/y(0c0),
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nt ke +1
(10)?  z(1loo)

z(00) =1+ z(loo), y(00) = - + y(1o0),

z(00) = 1/2(c00+), y(00) = x(c00+)(k(+) — z(000+)y(cc0+)),
2(000+) = y(000—) (Koo — 2(000—)y(c00—)), y(c00+) = 1/y(cc0—),
where
By = C—{0}, k(+) = (ko + ki + Koo) /2,
and V' (00) x By is the original space on which the Hamiltonian function Hy (z,y,t)
is defined.

2.2.3. The manifold Ery for the IV-th Painlevé system is obtained by glueing
four copies V() x Bry 3 (z(*),y(x),t) of C? x By via the following symplectic

identifications:
z(00) = y(000) (ko — z(000)y(0c0)),  y(00) = 1/y(0cc),

x(00) = 1/2(c00), y(00) = 2(000) (koo — z(000)y(c0)),

1/2 t 2Koo — Ko + 1

2(000) = z(0000), y(oo0) = _x(oooo)?’ N (0000)2 x(0000)

+ y(o0o0),

where By = C and V(00) x Byy is the original space on which the Hamiltonian

function Hyy (z,y,t) is defined.

2.2.4. The manifold Ejr; for the modified III-rd Painlevé system in the case
NoNeo 7 0 is obtained by glueing four copies V() x Brrp 3 (z(*),y(*),t) of C? x

By via the following symplectic identifications:

Mot Ko+ 1
(000)? = x(000)

2(00) = z(000),  y(00) = —— + y(0c0),

z(00) = 1/x(c00), y(00) = x(c00)((ko + Koo )/2 — x(000)y(c00)),

Moo Koo

2(00ne0)? (00100

2(000) = 2(00Ns0),  Y(000) = — ) + (00700 ),

where Brrpr = C — {0} and V(00) x By is the original space on which the

Hamiltonian function Hp/(x,y,t) is defined.
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2.2.5. The manifold Ejj; for the III-rd Painlevé system in the case 1yne 7# 0
is obtained by glueing four copies V () X Brrr 3 (x(x),y(x),t) of C? x Brrr via the
following symplectic identifications:

7’]0t Ko + 1
(000)2 * z(0c0)
2(00) = 1/x(c00),  (00) = z(000)((Ko + Kos)/2 — (000)y(oc0)),

Nool Koo
T(00not)? (00Nt
where Brj; = C — {0} and V(00) x By is the original space on which the Hamil-

tonian function Hyyr(x,y,t) is defined.

2(00) = 2(000),  y(00) = —— +y(0c0),

2(000) = z(00neot), y(000) = — ) + y (00N t),

2.2.6. The manifold Ej; for the II-nd Painlevé system is obtained by glueing
three copies V(%) x Brr 3 (z(x),y(*),t) of C? x By via the following symplectic

identifications:

x(00) = 1/x(o00), y(00) = z(c00)(—a — 1/2 — z(000)y(c00)),

2 B t 20
z(ooo00)?  x(0000)? z(0000)

x(000) = z(0c00), y(o00) = — + y(ooc0),

where By = C and V(00) x By is the original space on which the Hamiltonian

function Hyj(x,y,t) is defined.

2.2.7. We remark that each Hamiltonian function H j(x) on the chart V(%) x B
is a polynomial of z(x) and y(x).

2.3. We now give the confluence processes in Painlevé systems ([1], pp. 142 —
144).

2.3.1. The confluence process from the VI-th Painlevé system (Hy ) to the
V-th one (Hy) is given by the following diagram:

K1 — 776_1 + K +1, K — —ne_l,

('I? Y, HVI; t) - (IB, Y, 671HVI~>V(€)7 1+ Et)
This means the following: By the change of parameters, variables, and functions

ki=mne Y4k 1, ke =-—nel,

.CL’:X, y:Y, HVIZG_lHV]Hv, t:1+€T,
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the VI-th Painlevé system dx/dt = OHy /0y, dy/dt = —0Hy/0z is changed to a
Hamiltonian system dX/dT = 0Hy v /0Y, dY/dT = —0Hy v /0X, because

dyNdr —dHyy Ndt =dY NdX —dHy v NdT.

The new Hamiltonian Hy ;v is a function of X, Y, T depending also on parameters

ki, ko, Koo, M, €. The above diagram implies that the new Hamiltonian in which

X, Y, T, k; is rewritten by x,y,t, k¢, respectively, is equal to the function eHy,

where x,y,t, k1, k¢ are replaced by z,y,1 + et,ne~! + k; + 1, —ne~ 1, respectively.
We see

Hyrov(0) = L e — D)z —1—et)y? — {roe — 1)@ — 1 — et)

1+ et)
+ rx(x —1) — (n+ ery + €)tx}y + k(e)(x — 1 — et)],

where k(€) := [(ko + k¢)? — Koo?]/4. Notice that Hy 7.y (€) is a polynomial of z
and y, and it tends to Hy as ¢ — 0. This property holds in each of the following
processes.

2.3.2. The confluence process from (Hy ) to (Hry) is given by:

-2 -2 -2
n— —€ %, Kt —€ + 20 — Koy, Koo — —€ °,

€ V2 1
_:E’_ ,_
2 e Ve

2.3.3. The confluence process from (Hy ) to (Hyp/) is given by:

(:E7y7HV7t)_) ( HV—>IV(€),1+\/§€t).

RO = Tloo€ 'y Kt = KO, Roo = —Tlo€  F Kooy 1] = 106,
(z,y, Hy,t) — (1 +ex, e ty, Hy_ 111 (€),1).
2.3.4. The confluence process from (Hyy ) to (Hyy) is given by:
Ko — € 0/2, Koo — —a—1/2,
(z,y, Hyy,t) — (e 3(1 4 22/3€%1), 272 3¢y, 22/3¢ " Hyy 1 (e), —e 3 + 272/3¢t).
2.3.5. The confluence process from (Hyrr) to (Hjy) is given by:
o — =€ /4, oo — € P[4,
Ko — —€ 2/2 =20 — 1, Koo — € /2,

(flfyvaIH;t) - (1 + 26377 (6_1/2)y76_2HIII—>II(6)7 1+ 62t)'
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2.4. The following simple lemma will be used in Sections 4 through 8.

LEMMA 1. Let S or T be manifolds by glueing two copies (x,y)-space and
(u,v)-space or (z,w)-space of C? via the identification x = 1/u, y = u(a — uv) or
x = z+a/w, y=w, where a is a complex constant. Then S is isomorphic to T

provided a # 0.

3. Main results. We define manifolds £;_, k’s each of which describes the
confluence process from the defining manifold E; to that EFx. The manifold £;_. x

is by definition a complex analytic family of complex manifolds:

Ejmk = U Er-k(€) X e
ecC

Recall that the manifold E; depends on some parameters. Let us denote by F;(¢)
for which the papameters are chosen as in Subsection 2.3 depending on ¢, for ex-
ample, Ey(e€) is a manifold given in 2.2.1, where only the parameters are replaced
as in 2.3.1. The manifold £;_ k is constructed so that £;_, k(€) for each € # 0 is
isomorphic to E;(€) and £, k(0) is isomorphic to Fx. Although the latter asser-
tion is easy to see, the former is not trivial. Therefore we will verify it in Sections
4 through 8.

Every fiber €5k (€,t) of £k (e) over t is a disjoint union of a complex
plane C? and several complex lines C’s. Each confluence process is understood
as a collision of two complex lines. In the following theorems, we use (u,v) as
a coordinate system of a special chart appropriate to see the collision. In the
identification of (u,v) with another coordinate system, we observe a phenomenon
such as a generation of a pole of order m + n by a collision or confluence of two
poles of order m and n.

We notice that these confluence processes are compatible with those given in

Section 2.

THEOREM 1. Letn # 0. Then Eyi_v(€) is obtained by glueing five copies
of C? x By_v(€) via the following symplectic identifications:

£(00) = y(0oc0) (ko — 2(000)y(000)), y(00) = 1/y(000),
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-1 -1
+re+1 =
2(00) =14+, y(00)=" - +u?7_€€t+fu
(n+ (ke + e}t ke +1

T u(u—et) ta—aty

2(00) = 1/2(c00+), y(00) = x(cc0+)(k(+) — x(c00+)y(c00+)),

7(000+) = y(000—) (ko — (0000—)y(000—)),  y(oc0+) = 1/y(000—),

where

k(4) = (Ko + Kt + Koo )/2, Byr_y(e) =C—{0,—e 1},

and (2(00),y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function Hy v (€) (given in 2.3.1) is defined.

THEOREM 2. &y _rv(€) is obtained by glueing four copies of C? X By _1v (€)

via the following symplectic identifications:
2(00) = y(000)(ko — z(000)y(00)),  y(00) = 1/y(0c0),

2(00) = 1/x(00), 4(00) = 2(000) (koo — 2(000)y(c00)),

N A R A R
2(000) = u, y(oo0) = —— RPN —

1/2 t 2koo — Ko + 1

_u(u—e/\/§)2 - (u—€/V/2)2 * u—e/\2 A

+ v

where

By_v(e) = C—{—e'/v2},

and (x(00),y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function Hy _ .y (€) (given in 2.3.2) is defined.

THEOREM 3. Let noneo # 0. Then Ev_ 111/ (€) is obtained by glueing four

copies of C? x By _111/(€) via the following symplectic identifications:

Mot ko + 1
000)?  z(000)

z(00) = z(0c0), y(00) = 0 + y(000),

x(00) = 1/2(000), y(00) = 2(000)((ko + Koo)/2 — 2(000)y(c00)),
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~1 ~1
Noo€ T Koo Nt
0) =u, y(oo0) =
x(000) = u, y(o00) " + . +v
:_77004_5006 Koo to,
u(u + ¢€) u+e

where

By _.111r(e) = C — {0},

and (2(00),y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function Hy _ 17/ (€) (given in 2.3.3) is defined.

THEOREM 4. &y _r1(€) is obtained by glueing three copies of C*x Bry 11 (€)

via the following symplectic identifications:

z(00) = 1/x(c00), y(00) = x(c00)(—a — 1/2 — x(000)y(c0)),

21/3¢=2  2718¢=4 _t 204 ¢76/2 € 6/2
+ —
u? u? u u + 22/3¢2
2 t 2a

T Wt hE) @ Y

z(000) = u, y(o0) = — +v

where
Brv_r11(e) = C,

and (x(00),y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function Hpy_y1(€) (given in 2.3.4) is defined.

THEOREM 5. &rrr—.11(€) is obtained by glueing three copies of C2x Brrr—11(€)

via the following symplectic identifications:

z(00) = 1/x(c00), y(00) = x(0c00)(—a — 1/2 — x(000)y(c0)),

(e24+1)/2 €3/2 (e241)/2 €3/2+2a
5 + — 7~ — + v,
u u (u + 2¢) u+ 2¢
2 /2 t/2  2a

w(u+26)2 (u+20)2 w2 u+2e +v

x(000) = u, y(oc00) = —

where
Brrr—11(€) = C — {—e 2},
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and (x(00),y(00)) is the coordinate system of the original chart on which the Hamil-

tonian function Hrrr—rr(€) (given in 2.3.5) is defined.
The following theorem is verified by calculation.

THEOREM 6. FEach Hamiltonian function Hj_ k(€,%) on each x-chart of
Ej—xk(€) is a polynomial of x(x) and y(x), and it tends to the Hamiltonian function
Hpg (x) defined on the x-chart of Ex as € — 0.

4. Proof of THEOREM 1. Let Ey;(e) be a manifold given in 2.2.1, where
only the papameters are changed as in 2.3.1. The purpose of this section is to show
that Ey(e) is isomorphic to Ey 1y (€) for each sufficiently small e # 0.

Consider a change of time variable t: ¢ — 1 4+ €t, according to 2.3.1. Then
Evy1(e) is described as a patching of six copies of C? x By ;_y (€) by the identifica-

tions:

(4.1) £(00) = y(000)(ko — 2(000)y(000)),  y(00) = 1/y(0c0),

(4.2)  2(00) =1+ y(loo)(ne ! + Ky + 1 — 2(1loo)y(1oo)), »(00) = 1/y(1c0),

(4.3) 2(00) = 1+ et +y*(—ne* —z"y*), y(00) =1/y",

(4.4) x(00) = 1/2(0c00+), y(00) = x(000+)((ko+Ki+Foo)/2—2(000+)y(000+)),

(4.5) x(0004) = y(000—) (Koo — 2(000—)y(c00—)), y(c00+) = 1/y(c00-).

Here (z*,y*) is used in place of (z(to0), y(to0)).
The fiber Ey(e,t) of Eyvy(e) over t € Byy(e) is a disjoint union of C? >
(2(00),y(00)) and five complex lines:

Eyr(e,t) = C?U Dyoo(t) U D1oo(t) U D14 etoo(t) U Dogoy () U Dogo— (1),

where Doog (t) := {y(000) = 0}, D1oo(t) := {y(1oo) = 0}, Diyetoo(t) := {y* = 0},
Do+ (t) := {x(000+) = 0} and Dogo—(t) := {y(cc0—) = 0}. As € — 0, the divisor
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D1 4etoo() is going to collide with the divisor Dy (t). In the following, we choose
an appropriate coordinate system to observe the collision.

Since 7 # 0 by assumption, ne~! + x; + 1 # 0 for sufficiently small € # 0, and
hence a space obtained by patching two copies of C? x t, t € By (e), via (4.2)
is isomorphic to the one obtained by the patching

(4.6) z(00) =1+, y(00) = (ne* +re+1)/u' +0

on account of LEMMA 1. We see that D1 (t) = {y(loo) = 0} = {«' = 0}, and
(z(100),0) and (0,v") represent the same point on Dj.(t) if x(loo) = —(ne™t +
Kt —|— 1)’[}/.

We also see that a space obtained by patching two copies of C? x t via (4.3) is
isomorphic to the one obtained by the patching

(4.7) 2(00) =1+ et +u”, y(00) = —net/u”" +0".

It is easy to see that Diyeoo(t) = {y* = 0} = {u” = 0}, and (z*,0) and (0,v")
represent the same point on D1 o0 (t) if 2% = ne= 10",

By observing (4.6) and (4.7), we find that a space obtained by patching three
copies of C% x t via (4.2) and (4.3) is isomorphic to a space obtained by patching

two copies of C? x t via a relation

—1 ~1

ne 4+ ke +1 —ne
4.8 00) =1+ 00) = + + v.
(4.8) z(00) u, y(00) w " — el v

It should be noticed that D1 (t) = {u =0} and D1 yeoo(t) = {u = €t}.

5. Proof of THEOREM 2. We prove that Ey (¢) is isomorphic to v,y (€)
for each € # 0.

Let us replace the variables as
2(00) — (¢/v2)z(00), y(00) — (vV2/€)y(00), t— 1+ V/2et,

according to the known confluence process given in 2.3.2. Corresponding to this,

we further make the following replacements:
2(000) — (V2/€)z(00),  y(000) — (¢/v2)y(000),
2(000+) — (V2/€)z(000),  y(000+) — (¢/V2)y(o00),
2(000—) — (¢/V2)x(000-),  y(000—) — (V2/e)y(c00-).
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Then we have another description of Ey (¢) as a patching of five copies of C? x
By _rv(e) by

(5.1) 2(00) = y(000)(ko — 2(000)y(000)),  y(00) = 1/y(0c0),

(¢/Vv/2)x(00) = 1 + z(100),

(5.2) . 1+ V2et)e? €24 260 — Ko+ 1
V2¢~1y(00) = (To0)? 2(150) + y(1o0),
(5.3) x(00) = 1/2(c00), y(00) = x(000) (koo — 2(000)y(c0)),

(5.4)  a(000) = y(c00—)(—€? — z(000—)y(c0c0—)), y(o00) = 1/y(c00—).

The fiber Ey(e,t) of Ey(e) over t € By(e) is a disjoint union of C? >
(2(00),y(00)) and four complex lines:

Ev (e, t) = C? U Dyos(t) UD /5.1, (t) U Dooo U Do (t) U Doco—(t),

where Dooo (t) := {y(000) = 0}, D 5,1 (t) := {z(1loc) = 0}, Deoo(t) := {x(0c0) =
0} and Dego—(t) := {y(oc0—) = 0}. To see that the divisors D 5. .1 (t) and
Dooo—(t) collide with each other as e — 0, we look for a coordinate system which
is suitable to see the collision.

We first note that a space obtained by patching two copies of C? x t via (5.4)

is isomorphic to the one via a relation
(5.5) 2(000) = v/, y(oo0) = —e 2/u' + 1/,

by LEMMA 1, and that Doy—(t) = {y(cc0—) = 0} = {«/ = 0}, and (z(c0c0—),0)
and (0,v) are the same point on Dy (1) if z(c00—) = v'/e%.

We next study how one can choose an appropriate coordinate system near the
divisor D s, 1 (t) so that the identification of the system with (x(000), y(oc0)) is

of simple form. From (5.2) and (5.3), it follows that
2(000) = (¢/v/2)/(1 + 2(100)).
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Considering (000) = ¢/v/2 when z(1oc) = 0, we introduce a coodinate u” by
(5.6) 2(000) = €/V2 +u”.

Let us obtain the expression of y(o00) in terms of u” and y(loo) by (5.2), (5.3),

and (5.6). By a careful calculation, we have

671/\/§—|—t+672+2/€00—/§0—|—1

1

y(ooO) == w2 U

€24 Koo — ko + 1 €

€/V2+u" \/5(6/\/§+u”)2y(1oo)’

and then take a coordinate v’ by

-2
nw_ € Fho—kKot+1l €

B €/\V/2 +u’ \/5(6/\/5+u”)2y(1

00),
which is equivalent to
y(10o) = —vV2e He/V2 +u")20" — V2 (€ + koo — Ko+ 1)(e/V2 +u").

The relation between (z(000),y(c00)) and (u”,v") is

z(000) = €/V2 +u”,

(57) —1 2 t —2 92 _ 1
y(ooO):—G V2 + L€ + /iofl Ko + o

u//2 U

From these relations, it follows that a space obtained by patching (z(000), y(c00))-
space and (z(loo),y(loo))-space via the relation derived from (5.2) and (5.3) is
isomorphic to the one obtained by patching (z(000),y(c00))-space and (u”,v")-
space via (5.7). We can verify that D 5,1 (t) = {z(loc) = 0} = {u” = 0} and
that (0,y(100)) and (0,v") with y(1oo) = —(¢/v/2)v" — (€72 + Koo — ko + 1) are the
same point on D 5.1 (%),

By observing (5.5) and (5.7), we introduce a coordinate system (u,v) by

x(000) = u,
(5.8) €2 e_l/\/i +t €2+ 200 — Ko + 1

y(OOO):—T_(u_E/\/i)Q—F N

13




We can verify that the space obtained by patching (z(000), y(c0)), (z(c00—), y(c00—)),
and (z(1o0), y(1oo))-spaces is isomorphic to that obtained by patching (z(000), y(000))
and (u,v)-spaces via (5.8), and that Do () = {u = 0}, D 5.1 (t) = {u =

6. Proof of THEOREM 3. We prove that Ey (¢€) is isomorphic to Ey 7 (€)
for sufficiently small € # 0. Notice that this Fy (¢) is different from that in Section
5.

Since Nece™ L, —noe ! + Koo # 0 for sufficiently small € # 0 by assumption
NoNeo 7 0, Ev (€) is described as a patching of five copies of C? x By _ 1 (¢) via

/

(00

y(00) = noce ™1 /2" + ',

no€t ko +1
(Ic0)?  z(loo)
Jz(000+), y(00) = 2(000+)((ko + Koo)/2 — (0004 )y(0c0+)),

12

(00
x (0004

z(00) = 2,
z(00) =1+ z(loo), y(00) = -
z(00) =1

)=z

o y(000+) = (—moe ! + Koo) /2 4+ w”

by LEMMA 1.

In accordance with the process in 2.3.3, we consider the replacement
z(00) — 1 + €x(00), 5(00) — ¢ '4(00),

and coresponding to this, we make the following replacements:

z(100) — ex(000), y(loo) — e ty(000),
z(000+4) — z(000) /(e + x(00)),
y(000+) — (1 + € 2(000))[~(Ko + Koo) /2 + (€ + 2(000) )y(000)].

Then we have another description of Ey (¢) as a patching of five copies via

(6.1) 1+ex(00) =2/, € 'y(00) = neoe /2 +u,

77025 Ko + 1

(6.2) 2(00) = z(0c0),  y(00) = "~ 2(000)2 T (000)

+ y(000),

14



(6.3) x(00) = 1/2(00), y(00) = x(000)((ko + Keo)/2 — 2(000)y(c00)),

2(000) /(e + 2(000)) = 2",

(6.4) —Mo€e "t + Koo .

o Fee + (e + 2(000))y(c00) | = ——————— F+w

(1+ ¢ La(o00)) | -2

The fiber Ey (€,t) of Ey(e) over t is a disjoint union of C? > (z(00),y(00)) and

four complex lines
Ey(e,t) = C* U D_1(t) U Dgoo(t) U Dogo(t) U Dogo— (1),

where D_ —1(t) := {2’ = 0}, Do (t) := {x(000) = 0}, Dooo(t) := {x(c00) = 0}
and Doo—(t) := {z” = 0}. As € — 0, the divisors D_ -1, (t) and Dsoo—(t) are
going to collide with each other, and thus we must look for a coodinate system
suitable to see the collision.

We first seek a coordinate system for D_ -1.,(t) simply related to the system
(2(000),y(000)). By (6.1) and (6.3), we have

z(000) = €¢/(—1+ 2'),
and z(000) = —e¢ if 2/ = 0. Therefore we introduce u’ by
(6.5) r(000) = —e +u'.
A careful calculation by means of (6.1),(6.3) and (6.5) shows

_ Noo€ ' | —Too€ ' + (Ko + Foo)/2 _ € /

y(000) = u + e+ (_€+u,)2w

Then, introducing v by

o = ~Toot '+ (Ko + Koo)/2 _ € W
—e+u (—e+u)2
we have
1
(6.6) z(000) = —e +u',  y(o00) = noouel + '

15



Note that D_ -1, (t) = {z’ = 0} = {«/ = 0}, and that (0,w’) and (0,v) related by
w' 4 €V’ = Nooe ' 4 (Ko + Foo) /2

represent the same point on D_ -1,.(t).

We next choose a suitable coordinate system for the divisor Do (t) = {2" =
0} which is simply related to the coordinate system (z(0c0),y(c00)). By (6.4), we
have

x(000) = €2 /(1 — 2",

and z(000) = 0 if 2" = 0. Therefore we introduce v by
(6.7) z(000) = u”.

By making use of (6.4) and (6.7), we have

o€t + Koo N Noo€ t + (Ko — Koo )/2 N € o

0) =
y(OO ) U// E+U,/ (E+u//)2

Therefore, introducing v” by

V! = 77006_1 + (KO — ﬁw)/2 + € "
€ + u// (E _|_u//)2

Y

we obtain a coordinate system (u”,v”), which is related to (z(c00),y(c00)) by

-1
(6.8) z(000) =",  y(o00) = Moo€ ¥ Koo + 0"

u//

We can verify that Do (t) = {z” = 0} = {«” = 0}, and that (0,w”) and (0,v")
related by
—w" 4 v = naoet + (Ko + Koo )/2

represent the same point on Dooo— ().
Observing (6.5) and (6.8), we introduce a coordinate system (u,v) by
_77006_1 + Koo ’r]ooe_l

(6.9) z(000) = u, y(co0) = + + .

U u-—+e€
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It is verified that D_.-1(t) = {u = —€} and Dy (t) = {u = 0}.

7. Proof of THEOREM 4. In this section, we show that Ery (¢€) is isomorphic
to Erv_11(€) for each e # 0.
By LEMMA 1, Ery(e) is described as a patching of four copies of C? x

Brv_.11(€) via

1/2 —e 342728t e 0/2 4 2a

y(ocl) = S z(oo0)? (0000)? x(0000)

+ y(0000).
In accordance with the process in 2.3.4, we make the replacement
2(00) — e 3(1 4 22/3€22(00)),  y(00) — 272/3ey(00),

and corresponding to this,

€31 (000)
22/3¢2 + z(000)’
y(000) — 2723752232 4+ 1(000) ) {a + 1/2 + (22/3€% + 2:(000) )y (o00) }.

z(000) —

Then we have another description of Ejy(e) by patching four copies of C? x

Bry_r11(e€) via

(7.1) e 3(14223e22(00)) = 2, 2723ey(00) = (€79/2) /2 +w',

(7.2) x(00) = 1/2(00), y(00) = x(c00)(—a — 1/2 — 2(c00)y(c<0)),

e3x(000)
22/3¢2 + 1(000)
(7.3) 272/3¢75(22/3¢2 4+ 1(000)){ar + 1/2 + (2236 + 2(000))y(c00) }
1/2 —e 342728t 0/2 4 20
z(co0)3  z(0c0)2  a(o0)

= z(0000),

+ y(0c000).
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We see that the fiber Ejy(e,t) of Ery(e) over t is a disjoint union of C? >
(2(00),y(00)) and three complex lines:

Ejv(e, t) = C2 U D_272/367200(t) U Doo()(t) U Doooo(t);

where D_g 2/3,-2,,(t) := {2/ = 0}, Dooo(t) := {x(c00) = 0} and Deooo(t) =
{z(c000) = 0}. In order to see that two divisors D_g 2/5.2,.(t) and Deooo(t)
collide with each other as ¢ — 0, we are going to choose an appropriate coordinate
system to describe the collision.

First, we seek a coordinate system to describe the divisor D_5-2/5.-2, () so
that it is simply related to (z(000),y(o00)). From (7.1) and (7.2), it follows that

2(000) = 22/32 /(=1 4 €32),
and z(000) = —22/3¢2 if in particular 2’ = 0. Hence we take 1’ as
(7.4) 2(000) = —2%/32 + /.
From (7.1), (7.2) and (7.4), it follows that

/

€52 e%/2+a+1/2 22/3¢=1

v == Ry (2BE )"

Therefore, introducing v’ as

/

;€5 24a41/2 228
—922/3¢2 +u (—22/362 + u/)Qw ’

v =

we have

e/ +.

(7.5) 2(000) = =223 !, y(oo0) =

u/

We can verify that D_,-2/3.-2,(t) = {#’ = 0} = {«/ = 0}, and that the points
(0,w") and (0,v") related by

w + 223 = (e 5/2+a+1/2)
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represent the same point on D_5-2/3.-2.,(¢).
Secondly, we choose a coordinate system for the divisor D, (t) simply related
to (z(000),y(c00)). Taking the first equation of (7.3) into account, we choose a

variable u” as
(7.6) z(000) = u”.

Notice that z(ocooo) = 0 corresponds to u” = 0. By making use of (7.3) and (7.6),

we obtain

21/3¢=2  271/3¢=4 ¢ 6/2 4 20

1

y(o00) = 73 W u

€ 5/24a—1/2 22/3¢b
22/3¢2 + + (22/362 +u//)

+ 54(0000).

Therefore, by introducing v by

g €%2+a—1/2 22/3¢5
- 22/362 _|_ull + (22/362 +u”)2y(oooo),
we have
21/3¢=2 27134 ¢ ¢ 6/24 9
(7.7)  2(o00) =u”,  y(o00) = — w3 + w2 o u +0".

It is verified that Doooo(t) = {z(0000) = 0} = {u” = 0}, and the points (0, y(coo0))
and (0,v") related by

y(oooo) — 223 1" = —e3(e75/2 4+ a —1/2)

represent the same point on Dyooo (1).
Lastly, by observing (7.5) and (7.7), we introduce a coordinate system (u,v)
by

z(000) =u,

(7.8) 2/3¢=2  971/83c74 —t 76/2 4 20 € 6/2
y(000) = = —5— + " - T mEa v
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We can verify that D_y-2/5,—2.(t) = {u = —22/3¢2} and Doooo(t) = {u = 0}.

8. Proof of THEOREM 5. We show that Ej;(€) is isomorphic to Err7—11(€)
for each € # 0.

The manifold E;;;(e) is described as a patching of four copies of C? x Byr(e)
via
e t/4 7242
x(000)?2 x(000)
x(00) = 1/x(00), y(00) = x(c00)(—a — 1/2 — 2(c00)y(<0)),

e 3t/4 € 3/2

z(00nct)?  T(00Nsot

£(00) = x(0c0), y(00) = +y(0c0),

x(000) = x(oconeot), y(oc0l) = —

) + y(00neot).

Acoording to the confluence process given in 2.3.5, we make the replacements
2(00) — 1+ 2ex(00), y(00) — y(00)/(2¢), t— 1+ €t

and corresponding to this,

x(000)

#(000) — 2e + z(000)’

y(o00) — [a+1/2 + (2€ + x(000))y(c00)] .

2¢ + x(000)
2
Then we have another description of Errr(€) by patching of four copies of C? x

Brrr—r1(e) via
1+ 2ex(00) = z(000),

(8.1) e 1+t /4 B €3/2 + 2a

+ y(0o0),

(8.2) x(00) = 1/x(c00), y(00) = x(c00)(—a — 1/2 — 2(c00)y(c<0)),

w(ool) . 2t a(oc) i
(8.3) 2e+a(oc0) 5e o+ 1/2+ (2e + 2(000))y(oc0)]
. " 3
_ € (1;26 t)/4 N € x*/Q Y

Here (z*,y") := (2(00noeot), y(00nst)).
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We see that the fiber Errr(e,t) of Errr(e) over t is a disjoint union of C? >
(2(00),y(00)) and three complex lines:

Errr(e,t) = C?UD_ -1 506(t) U Doco () U Doge—s1/4(t),

where D_ -1 /55, (t) := {x(000) = 0}, Dooo(t) := {2(000) = 0} and Dgc-3¢/4(t) :=
{z* = 0}. As ¢ tends to 0, the divisors D_ -1 /55, (t) and Duge-34/4(t) collide with
each other. In the following, we look for an appropriate coodinate system which is
suitable to see the collision of D_ -1 /55, (t) and D3¢ /4(t).

We first obtain an coodinate system of a neighborhood of D_ -1 /5(t), so that
it is related with (x(000),y(000)) in simple form. Since the right-hand side of

x(000) = 2¢/(—1 + x(000))

is —2¢ if £(0o0) = 0, we introduce a variable u’ by

(8,4) z(000) = —2e + u'.
We see that
(e24+1)/2 €3/2 +2a
y(ooO) == w2 - u!
€32 +a—1/2 2¢
_ 000),
* —2e+u/ (—26+u’)2y( %)
and then introduce a variable v’ by
-3
, €°/2 +a—1/2 2¢
= — 000).
! —2e+u/ (—2e+u’)2y( %)

The relation between (z(000),y(c00)) and (u',v’) is given by

—24¢)/2 —3/2 +92
(2+8/2 2 +2

/ b

(8.5) z(000) = —2e +u', y(o00) = — " ”

and D_ -1 /55(t) = {2(000) = 0} = {u/ = 0}.
We next obtain an appropriate coodinate system of a neighborhood of D -3/4(t).
Since the right-hand side of

x(000) = 2ex™ /(1 — ™)
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is 0 if * = 0, we introduce a variable u” by
(8.6) z(000) = u”.

Then we have

(672+t)/2+€73/2 € 3/2 +oz+1/2+ 2¢ .

0) =— .
y(oo ) ul/Q u/l 26+U” (26+u’l)2y

Therefore, introducing a variable v” by

” €3/2 +Oz+1/2+ 2¢ .
v = —
2¢ + u' (26+u”)2y ’

we have

(24+1)/2 €32
= + U//.

(8.7 #(oc0) = u”,  ylool) = — .

Now, observing (8.5) and (8.7), we take a coordinate system (u,v) defined by
x(000) =u,

(88) (€242 €32 (€241)/2 €3/242a
y(oc0) == u? * v (ut202  u+2e v

Then we can verify

D—e—l/Zoo(t) = {U = _26}7 Dooe—3t/4<t) = {U’ = 0}
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