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Abstract. For each Painlevé system, we have a manifold, called the

defining manifold, on which the system defines a uniform foliation. In

this paper, we describe confluence processes in these manifolds as defor-

mations of manifolds compatible to those in Painlevé systems.

1. Introduction. The purpose of this paper is to describe confluence pro-
cesses in the defining manifolds for Painlevé systems, namely, to show a hierarchy
of these manifolds.

Each Painlevé equation PJ (J = V I, V, ..., I) is equivalent to a Hamiltonian
system (HJ) : dx/dt = ∂HJ/∂y, dy/dt = −∂HJ/∂x, where HJ is a polynomial of
x and y whose coefficients are rational functions of t. Thus the Hamiltonian system
(HJ) is called the J-th Painlevé system.

For each Painlevé system, there is a manifold EJ , called the defining manifold
for the J-th Painlevé system, on which the system defines a uniform foliation. The
manifold EJ is a fiber space over the t-space BJ = P− {the fixed singular points}
(P denotes the complex projective line), containing as a fiber subspace the trivial
fiber space C2 × BJ (3 (x, y, t)) on which the system (HJ) defines a nonsingular
foliation. It should be noted that the foliation on C2 × BJ(3 (x, y, t)) is not
uniform because the solution of (HJ) may have movable singularities, but that on
EJ is uniform, namely, (i) every leaf is transversal to fibers, (ii) for every P0 ∈
EJ , any curve in BJ with the starting point πJ(P0) (πJ denotes the projection
from EJ onto BJ) can be lifted on the leaf passing through the point P0 ([4]).
Each fiber EJ(t) over t ∈ BJ , called the space of initial conditions, consists of
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mutually disjoint C2 and several divisors each of which is isomorphic to C ([4]).
The manifold EJ (J 6= I) is described as a patching of several copies of C2×BJ by
certain birational and symplectic identifications, and the Hamiltonian on each chart
VJ(∗) = C2×BJ 3 (x(∗), y(∗), t) is a polynomial of x(∗) and y(∗) whose coefficients
are rational functions of t holomorphic in BJ ([6],[7]). The Hamiltonian system
defined on the whole manifold EJ is called the extended J-th Painlevé system. Note
that the space of initial conditions is not compact, but there is no other Hamiltonian
system holomorphic on EJ and meromorphic on some compactification of EJ than
the extended J-th Painlevé system ([6],[8]).

On the other hand, we know certain confluence processes in Painlevé systems
([1]). Thus it is natural to ask if there exist confluence processes in the defining
manifolds EJ ’s compatible to those in Painlevé systems. In this paper, we establish
them as deformations of manifolds.

This paper is organized as follows. Section 2 is devoted to some preliminaries
which are relevant to state and prove our results. The main results of this paper
are given in Section 3, and proved in the following sections.

2. Preliminaries. In this section, we recall some known facts and recall a
lemma which is used in the proofs of our results.

2.1. We first review the forms of the Hamiltonian functions for Painlevé systems
([1]):

HV I(x, y, t) =
1

t(t− 1)
[x(x− 1)(x− t)y2 − {κ0(x− 1)(x− t)

+ κ1x(x− t) + (κt − 1)x(x− 1)}y + κ(x− t)]

(κ :=
1
4
[(κ0 + κ1 + κt − 1)2 − κ∞2]),

HV (x, y, t) =
1
t
[x(x− 1)2y2 − {κ0(x− 1)2 + κtx(x− 1)− ηtx}y + κ(x− 1)]

(κ :=
1
4
{(κ0 + κt)2 − κ2

∞}),
HIV (x, y, t) =2xy2 − {x2 + 2tx + 2κ0}y + κ∞x,

HIII′(x, y, t) =
1
t
[x2y2 − {η∞x2 + κ0x− η0t}y +

1
2
η∞(κ0 + κ∞)x],
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HIII(x, y, t) =
1
t
[2x2y2 − {2η∞tx2 + (2κ0 + 1)x− 2η0t}y + η∞(κ0 + κ∞)tx],

HII(x, y, t) =
1
2
y2 − (x2 +

t

2
)y − (α +

1
2
)x,

HI(x, y, t) =
1
2
y2 − 2x3 − tx.

Here x, y, and t are variables and the other Greek letters stand for complex con-
stants.

2.2. We next give descriptions of the defining manifolds EJ ’s (J 6= I) ([6],[7]).
In the following, we distinguish several coordinate systems by labels such as 00,0∞,1∞
and so on. The coordinate system (x(00), y(00), t) = (x, y, t) is the original one of
V (00)×BJ = C2×BJ on which the Hamiltonian system (HJ ) is defined. We note
that (x(0∞), y(0∞)), for example, is a coordinate system which is appropriate to
observe a 1-parameter family of leaves passing through the point (x, y) = (0,∞).

2.2.1. The manifold EV I for the VI-th Painlevé system is obtained by glueing
six copies V (∗) × BV I 3 (x(∗), y(∗), t) of C2 × BV I via the following symplectic
identifications:

x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

x(00) = 1 + y(1∞)(κ1 − x(1∞)y(1∞)), y(00) = 1/y(1∞),

x(00) = t + y(t∞)(κt − x(t∞)y(t∞)), y(00) = 1/y(t∞),

x(00) = 1/x(∞0+), y(00) = x(∞0+)(κ(+)− x(∞0+)y(∞0+)),

x(∞0+) = y(∞0−)(κ∞ − x(∞0−)y(∞0−)), y(∞0+) = 1/y(∞0−),

where
BV I = C− {0, 1}, κ(+) = (κ0 + κ1 + κt − 1 + κ∞)/2,

and V (00)×BV I is the original space on which the Hamiltonian function HV I(x, y, t)
is defined.

2.2.2. The manifold EV for the V-th Painlevé system in the case η 6= 0 is
obtained by glueing five copies V (∗) × BV 3 (x(∗), y(∗), t) of C2 × BV via the
following symplectic identifications:

x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),
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x(00) = 1 + x(1∞), y(00) = − ηt

x(1∞)2
+

κt + 1
x(1∞)

+ y(1∞),

x(00) = 1/x(∞0+), y(00) = x(∞0+)(κ(+)− x(∞0+)y(∞0+)),

x(∞0+) = y(∞0−)(κ∞ − x(∞0−)y(∞0−)), y(∞0+) = 1/y(∞0−),

where

BV = C− {0}, κ(+) = (κ0 + κt + κ∞)/2,

and V (00)×BV is the original space on which the Hamiltonian function HV (x, y, t)
is defined.

2.2.3. The manifold EIV for the IV-th Painlevé system is obtained by glueing
four copies V (∗) × BIV 3 (x(∗), y(∗), t) of C2 × BIV via the following symplectic
identifications:

x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)(κ∞ − x(∞0)y(∞0)),

x(∞0) = x(∞∞), y(∞0) = − 1/2
x(∞∞)3

− t

x(∞∞)2
+

2κ∞ − κ0 + 1
x(∞∞)

+ y(∞∞),

where BIV = C and V (00) × BIV is the original space on which the Hamiltonian
function HIV (x, y, t) is defined.

2.2.4. The manifold EIII′ for the modified III-rd Painlevé system in the case
η0η∞ 6= 0 is obtained by glueing four copies V (∗) × BIII′ 3 (x(∗), y(∗), t) of C2 ×
BIII′ via the following symplectic identifications:

x(00) = x(0∞), y(00) = − η0t

x(0∞)2
+

κ0 + 1
x(0∞)

+ y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)((κ0 + κ∞)/2− x(∞0)y(∞0)),

x(∞0) = x(∞η∞), y(∞0) = − η∞
x(∞η∞)2

+
κ∞

x(∞η∞)
+ y(∞η∞),

where BIII′ = C − {0} and V (00) × BIII′ is the original space on which the
Hamiltonian function HIII′(x, y, t) is defined.
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2.2.5. The manifold EIII for the III-rd Painlevé system in the case η0η∞ 6= 0
is obtained by glueing four copies V (∗)×BIII 3 (x(∗), y(∗), t) of C2×BIII via the
following symplectic identifications:

x(00) = x(0∞), y(00) = − η0t

x(0∞)2
+

κ0 + 1
x(0∞)

+ y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)((κ0 + κ∞)/2− x(∞0)y(∞0)),

x(∞0) = x(∞η∞t), y(∞0) = − η∞t

x(∞η∞t)2
+

κ∞
x(∞η∞t)

+ y(∞η∞t),

where BIII = C− {0} and V (00)×BIII is the original space on which the Hamil-
tonian function HIII(x, y, t) is defined.

2.2.6. The manifold EII for the II-nd Painlevé system is obtained by glueing
three copies V (∗) × BII 3 (x(∗), y(∗), t) of C2 × BII via the following symplectic
identifications:

x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

x(∞0) = x(∞∞), y(∞0) = − 2
x(∞∞)4

− t

x(∞∞)2
− 2α

x(∞∞)
+ y(∞∞),

where BII = C and V (00) × BII is the original space on which the Hamiltonian
function HII(x, y, t) is defined.

2.2.7. We remark that each Hamiltonian function HJ(∗) on the chart V (∗)×BJ

is a polynomial of x(∗) and y(∗).
2.3. We now give the confluence processes in Painlevé systems ([1], pp. 142 –

144).

2.3.1. The confluence process from the VI-th Painlevé system (HV I) to the
V-th one (HV ) is given by the following diagram:

κ1 → ηε−1 + κt + 1, κt → −ηε−1,

(x, y, HV I , t) → (x, y, ε−1HV I→V (ε), 1 + εt).

This means the following: By the change of parameters, variables, and functions

κ1 = ηε−1 + kt + 1, κt = −ηε−1,

x = X, y = Y, HV I = ε−1HV I→V , t = 1 + εT,
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the VI-th Painlevé system dx/dt = ∂HV I/∂y, dy/dt = −∂HV I/∂x is changed to a
Hamiltonian system dX/dT = ∂HV I→V /∂Y, dY/dT = −∂HV I→V /∂X, because

dy ∧ dx− dHV I ∧ dt = dY ∧ dX − dHV I→V ∧ dT.

The new Hamiltonian HV I→V is a function of X,Y, T depending also on parameters
kt, κ0, κ∞, η, ε. The above diagram implies that the new Hamiltonian in which
X, Y, T, kt is rewritten by x, y, t, κt, respectively, is equal to the function εHV I ,
where x, y, t, κ1, κt are replaced by x, y, 1 + εt, ηε−1 + κt + 1,−ηε−1, respectively.

We see

HV I→V (ε) =
1

t(1 + εt)
[x(x− 1)(x− 1− εt)y2 − {κ0(x− 1)(x− 1− εt)

+ κtx(x− 1)− (η + εκt + ε)tx}y + κ(ε)(x− 1− εt)],

where κ(ε) := [(κ0 + κt)2 − κ∞2]/4. Notice that HV I→V (ε) is a polynomial of x

and y, and it tends to HV as ε → 0. This property holds in each of the following
processes.

2.3.2. The confluence process from (HV ) to (HIV ) is given by:

η → −ε−2, κt → ε−2 + 2κ∞ − κ0, κ∞ → −ε−2,

(x, y,HV , t) → (
ε√
2
x,

√
2

ε
y,

1√
2ε

HV→IV (ε), 1 +
√

2εt).

2.3.3. The confluence process from (HV ) to (HIII′) is given by:

κ0 → η∞ε−1, κt → κ0, κ∞ → −η∞ε−1 + κ∞, η → η0ε,

(x, y,HV , t) → (1 + εx, ε−1y,HV→III′(ε), t).

2.3.4. The confluence process from (HIV ) to (HII) is given by:

κ0 → ε−6/2, κ∞ → −α− 1/2,

(x, y,HIV , t) → (ε−3(1 + 22/3ε2x), 2−2/3εy, 22/3ε−1HIV→II(ε),−ε−3 + 2−2/3εt).

2.3.5. The confluence process from (HIII) to (HII) is given by:

η0 → −ε−3/4, η∞ → ε−3/4,

κ0 → −ε−3/2− 2α− 1, κ∞ → ε−3/2,

(x, y,HIII , t) → (1 + 2εx, (ε−1/2)y, ε−2HIII→II(ε), 1 + ε2t).
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2.4. The following simple lemma will be used in Sections 4 through 8.
LEMMA 1. Let S or T be manifolds by glueing two copies (x, y)-space and

(u, v)-space or (z, w)-space of C2 via the identification x = 1/u, y = u(a− uv) or
x = z + a/w, y = w, where a is a complex constant. Then S is isomorphic to T

provided a 6= 0.

3. Main results. We define manifolds EJ→K ’s each of which describes the
confluence process from the defining manifold EJ to that EK . The manifold EJ→K

is by definition a complex analytic family of complex manifolds:

EJ→K =
⋃

ε∈C

EJ→K(ε)× ε.

Recall that the manifold EJ depends on some parameters. Let us denote by EJ (ε)
for which the papameters are chosen as in Subsection 2.3 depending on ε, for ex-
ample, EV I(ε) is a manifold given in 2.2.1, where only the parameters are replaced
as in 2.3.1. The manifold EJ→K is constructed so that EJ→K(ε) for each ε 6= 0 is
isomorphic to EJ(ε) and EJ→K(0) is isomorphic to EK . Although the latter asser-
tion is easy to see, the former is not trivial. Therefore we will verify it in Sections
4 through 8.

Every fiber EJ→K(ε, t) of EJ→K(ε) over t is a disjoint union of a complex
plane C2 and several complex lines C’s. Each confluence process is understood
as a collision of two complex lines. In the following theorems, we use (u, v) as
a coordinate system of a special chart appropriate to see the collision. In the
identification of (u, v) with another coordinate system, we observe a phenomenon
such as a generation of a pole of order m + n by a collision or confluence of two
poles of order m and n.

We notice that these confluence processes are compatible with those given in
Section 2.

THEOREM 1. Let η 6= 0. Then EV I→V (ε) is obtained by glueing five copies
of C2 ×BV I→V (ε) via the following symplectic identifications:

x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),
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x(00) = 1 + u, y(00) =
ηε−1 + κt + 1

u
+
−ηε−1

u− εt
+ v

= − (η + (κt + 1)ε)t
u(u− εt)

+
κt + 1
u− εt

+ v,

x(00) = 1/x(∞0+), y(00) = x(∞0+)(κ(+)− x(∞0+)y(∞0+)),

x(∞0+) = y(∞0−)(κ∞ − x(0∞0−)y(∞0−)), y(∞0+) = 1/y(∞0−),

where
κ(+) = (κ0 + κt + κ∞)/2, BV I→V (ε) = C− {0,−ε−1},

and (x(00), y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function HV I→V (ε) (given in 2.3.1) is defined.

THEOREM 2. EV→IV (ε) is obtained by glueing four copies of C2×BV→IV (ε)
via the following symplectic identifications:

x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)(κ∞ − x(∞0)y(∞0)),

x(∞0) = u, y(∞0) = −ε−2

u
− ε−1/

√
2 + t

(u− ε/
√

2)2
+

ε−2 + 2κ∞ − κ0 + 1
u− ε/

√
2

+ v

= − 1/2
u(u− ε/

√
2)2

− t

(u− ε/
√

2)2
+

2κ∞ − κ0 + 1
u− ε/

√
2

+ v,

where
BV→IV (ε) = C− {−ε−1/

√
2},

and (x(00), y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function HV→IV (ε) (given in 2.3.2) is defined.

THEOREM 3. Let η0η∞ 6= 0. Then EV→III′(ε) is obtained by glueing four
copies of C2 ×BV→III′(ε) via the following symplectic identifications:

x(00) = x(0∞), y(00) = − η0t

x(0∞)2
+

κ0 + 1
x(0∞)

+ y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)((κ0 + κ∞)/2− x(∞0)y(∞0)),
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x(∞0) = u, y(∞0) =
−η∞ε−1 + κ∞

u
+

η∞ε−1

u + ε
+ v

=
−η∞ + κ∞ε

u(u + ε)
+

κ∞
u + ε

+ v,

where

BV→III′(ε) = C− {0},

and (x(00), y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function HV→III′(ε) (given in 2.3.3) is defined.

THEOREM 4. EIV→II(ε) is obtained by glueing three copies of C2×BIV→II(ε)
via the following symplectic identifications:

x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

x(∞0) = u, y(∞0) = −21/3ε−2

u3
+

2−1/3ε−4 − t

u2
− 2α + ε−6/2

u
+

ε−6/2
u + 22/3ε2

+ v

= − 2
u3(u + 22/3ε2)

− t

u2
− 2α

u
+ v,

where

BIV→II(ε) = C,

and (x(00), y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function HIV→II(ε) (given in 2.3.4) is defined.

THEOREM 5. EIII→II(ε) is obtained by glueing three copies of C2×BIII→II(ε)
via the following symplectic identifications:

x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

x(∞0) = u, y(∞0) = − (ε−2 + t)/2
u2

+
ε−3/2

u
− (ε−2 + t)/2

(u + 2ε)2
− ε−3/2 + 2α

u + 2ε
+ v,

= − 2
u2(u + 2ε)2

− t/2
(u + 2ε)2

− t/2
u2

− 2α

u + 2ε
+ v,

where

BIII→II(ε) = C− {−ε−2},
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and (x(00), y(00)) is the coordinate system of the original chart on which the Hamil-
tonian function HIII→II(ε) (given in 2.3.5) is defined.

The following theorem is verified by calculation.

THEOREM 6. Each Hamiltonian function HJ→K(ε, ∗) on each ∗-chart of
EJ→K(ε) is a polynomial of x(∗) and y(∗), and it tends to the Hamiltonian function
HK(∗) defined on the ∗-chart of EK as ε → 0.

4. Proof of THEOREM 1. Let EV I(ε) be a manifold given in 2.2.1, where
only the papameters are changed as in 2.3.1. The purpose of this section is to show
that EV I(ε) is isomorphic to EV I→V (ε) for each sufficiently small ε 6= 0.

Consider a change of time variable t: t → 1 + εt, according to 2.3.1. Then
EV I(ε) is described as a patching of six copies of C2×BV I→V (ε) by the identifica-
tions:

(4.1) x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

(4.2) x(00) = 1 + y(1∞)(ηε−1 + κt + 1− x(1∞)y(1∞)), y(00) = 1/y(1∞),

(4.3) x(00) = 1 + εt + y∗(−ηε−1 − x∗y∗), y(00) = 1/y∗,

(4.4) x(00) = 1/x(∞0+), y(00) = x(∞0+)((κ0+κt+κ∞)/2−x(∞0+)y(∞0+)),

(4.5) x(∞0+) = y(∞0−)(κ∞ − x(∞0−)y(∞0−)), y(∞0+) = 1/y(∞0−).

Here (x∗, y∗) is used in place of (x(t∞), y(t∞)).
The fiber EV I(ε, t) of EV I(ε) over t ∈ BV I(ε) is a disjoint union of C2 3

(x(00), y(00)) and five complex lines:

EV I(ε, t) = C2 ∪D0∞(t) ∪D1∞(t) ∪D1+εt∞(t) ∪D∞0+(t) ∪D∞0−(t),

where D0∞(t) := {y(0∞) = 0}, D1∞(t) := {y(1∞) = 0}, D1+εt∞(t) := {y∗ = 0},
D∞0+(t) := {x(∞0+) = 0} and D∞0−(t) := {y(∞0−) = 0}. As ε → 0, the divisor
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D1+εt∞(t) is going to collide with the divisor D1∞(t). In the following, we choose
an appropriate coordinate system to observe the collision.

Since η 6= 0 by assumption, ηε−1 + κt + 1 6= 0 for sufficiently small ε 6= 0, and
hence a space obtained by patching two copies of C2 × t, t ∈ BV I→V (ε), via (4.2)
is isomorphic to the one obtained by the patching

(4.6) x(00) = 1 + u′, y(00) = (ηε−1 + κt + 1)/u′ + v′

on account of LEMMA 1. We see that D1∞(t) = {y(1∞) = 0} = {u′ = 0}, and
(x(1∞), 0) and (0, v′) represent the same point on D1∞(t) if x(1∞) = −(ηε−1 +
κt + 1)v′.

We also see that a space obtained by patching two copies of C2× t via (4.3) is
isomorphic to the one obtained by the patching

(4.7) x(00) = 1 + εt + u′′, y(00) = −ηε−1/u′′ + v′′.

It is easy to see that D1+εt∞(t) = {y∗ = 0} = {u′′ = 0}, and (x∗, 0) and (0, v′′)
represent the same point on D1+εt∞(t) if x∗ = ηε−1v′′.

By observing (4.6) and (4.7), we find that a space obtained by patching three
copies of C2 × t via (4.2) and (4.3) is isomorphic to a space obtained by patching
two copies of C2 × t via a relation

(4.8) x(00) = 1 + u, y(00) =
ηε−1 + κt + 1

u
+
−ηε−1

u− εt
+ v.

It should be noticed that D1∞(t) = {u = 0} and D1+εt∞(t) = {u = εt}.

5. Proof of THEOREM 2. We prove that EV (ε) is isomorphic to EV→IV (ε)
for each ε 6= 0.

Let us replace the variables as

x(00) → (ε/
√

2)x(00), y(00) → (
√

2/ε)y(00), t → 1 +
√

2εt,

according to the known confluence process given in 2.3.2. Corresponding to this,
we further make the following replacements:

x(0∞) → (
√

2/ε)x(0∞), y(0∞) → (ε/
√

2)y(0∞),

x(∞0+) → (
√

2/ε)x(∞0), y(∞0+) → (ε/
√

2)y(∞0),

x(∞0−) → (ε/
√

2)x(∞0−), y(∞0−) → (
√

2/ε)y(∞0−).
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Then we have another description of EV (ε) as a patching of five copies of C2 ×
BV→IV (ε) by

(5.1) x(00) = y(0∞)(κ0 − x(0∞)y(0∞)), y(00) = 1/y(0∞),

(5.2)
(ε/
√

2)x(00) = 1 + x(1∞),
√

2ε−1y(00) =
(1 +

√
2εt)ε−2

x(1∞)2
+

ε−2 + 2κ∞ − κ0 + 1
x(1∞)

+ y(1∞),

(5.3) x(00) = 1/x(∞0), y(00) = x(∞0)(κ∞ − x(∞0)y(∞0)),

(5.4) x(∞0) = y(∞0−)(−ε−2 − x(∞0−)y(∞0−)), y(∞0) = 1/y(∞0−).

The fiber EV (ε, t) of EV (ε) over t ∈ BV (ε) is a disjoint union of C2 3
(x(00), y(00)) and four complex lines:

EV (ε, t) = C2 ∪D0∞(t) ∪D√
2ε−1∞(t) ∪D∞0 ∪D∞0(t) ∪D∞0−(t),

where D0∞(t) := {y(0∞) = 0}, D√
2ε−1∞(t) := {x(1∞) = 0}, D∞0(t) := {x(∞0) =

0} and D∞0−(t) := {y(∞0−) = 0}. To see that the divisors D√
2ε−1∞(t) and

D∞0−(t) collide with each other as ε → 0, we look for a coordinate system which
is suitable to see the collision.

We first note that a space obtained by patching two copies of C2 × t via (5.4)
is isomorphic to the one via a relation

(5.5) x(∞0) = u′, y(∞0) = −ε−2/u′ + v′,

by LEMMA 1, and that D∞0−(t) = {y(∞0−) = 0} = {u′ = 0}, and (x(∞0−), 0)
and (0, v′) are the same point on D∞0−(t) if x(∞0−) = v′/ε2.

We next study how one can choose an appropriate coordinate system near the
divisor D√

2ε−1∞(t) so that the identification of the system with (x(∞0), y(∞0)) is
of simple form. From (5.2) and (5.3), it follows that

x(∞0) = (ε/
√

2)/(1 + x(1∞)).
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Considering x(∞0) = ε/
√

2 when x(1∞) = 0, we introduce a coodinate u′′ by

(5.6) x(∞0) = ε/
√

2 + u′′.

Let us obtain the expression of y(∞0) in terms of u′′ and y(1∞) by (5.2), (5.3),
and (5.6). By a careful calculation, we have

y(∞0) =− ε−1/
√

2 + t

u′′2
+

ε−2 + 2κ∞ − κ0 + 1
u′′

− ε−2 + κ∞ − κ0 + 1
ε/
√

2 + u′′
− ε√

2(ε/
√

2 + u′′)2
y(1∞),

and then take a coordinate v′′ by

v′′ = −ε−2 + κ∞ − κ0 + 1
ε/
√

2 + u′′
− ε√

2(ε/
√

2 + u′′)2
y(1∞),

which is equivalent to

y(1∞) = −
√

2ε−1(ε/
√

2 + u′′)2v′′ −
√

2ε−1(ε−2 + κ∞ − κ0 + 1)(ε/
√

2 + u′′).

The relation between (x(∞0), y(∞0)) and (u′′, v′′) is

(5.7)
x(∞0) = ε/

√
2 + u′′,

y(∞0) = −ε−1/
√

2 + t

u′′2
+

ε−2 + 2κ∞ − κ0 + 1
u′′

+ v′′.

From these relations, it follows that a space obtained by patching (x(∞0), y(∞0))-
space and (x(1∞), y(1∞))-space via the relation derived from (5.2) and (5.3) is
isomorphic to the one obtained by patching (x(∞0), y(∞0))-space and (u′′, v′′)-
space via (5.7). We can verify that D√

2ε−1∞(t) = {x(1∞) = 0} = {u′′ = 0} and
that (0, y(1∞)) and (0, v′′) with y(1∞) = −(ε/

√
2)v′′− (ε−2 +κ∞−κ0 +1) are the

same point on D√
2ε−1∞(t).

By observing (5.5) and (5.7), we introduce a coordinate system (u, v) by

(5.8)
x(∞0) = u,

y(∞0) = −ε−2

u
− ε−1/

√
2 + t

(u− ε/
√

2)2
+

ε−2 + 2κ∞ − κ0 + 1
u− ε/

√
2

+ v.
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We can verify that the space obtained by patching (x(∞0), y(∞)), (x(∞0−), y(∞0−)),
and (x(1∞), y(1∞))-spaces is isomorphic to that obtained by patching (x(∞0), y(∞0))
and (u, v)-spaces via (5.8), and that D∞0−(t) = {u = 0}, D√

2ε−1∞(t) = {u =
ε/
√

2}.

6. Proof of THEOREM 3. We prove that EV (ε) is isomorphic to EV→III′(ε)
for sufficiently small ε 6= 0. Notice that this EV (ε) is different from that in Section
5.

Since η∞ε−1,−η0ε
−1 + κ∞ 6= 0 for sufficiently small ε 6= 0 by assumption

η0η∞ 6= 0, EV (ε) is described as a patching of five copies of C2 ×BV→III′(ε) via

x(00) = z′, y(00) = η∞ε−1/z′ + w′,

x(00) = 1 + x(1∞), y(00) = − η0εt

x(1∞)2
+

κ0 + 1
x(1∞)

+ y(1∞),

x(00) = 1/x(∞0+), y(00) = x(∞0+)((κ0 + κ∞)/2− x(∞0+)y(∞0+)),

x(∞0+) = z′′, y(∞0+) = (−η0ε
−1 + κ∞)/z′′ + w′′

by LEMMA 1.
In accordance with the process in 2.3.3, we consider the replacement

x(00) → 1 + εx(00), y(00) → ε−1y(00),

and coresponding to this, we make the following replacements:

x(1∞) → εx(0∞), y(1∞) → ε−1y(0∞),

x(∞0+) → x(∞0)/(ε + x(∞0)),

y(∞0+) → (1 + ε−1x(∞0))[−(κ0 + κ∞)/2 + (ε + x(∞0))y(∞0)].

Then we have another description of EV (ε) as a patching of five copies via

(6.1) 1 + εx(00) = z′, ε−1y(00) = η∞ε−1/z′ + w′,

(6.2) x(00) = x(0∞), y(00) = − η0t

x(0∞)2
+

κ0 + 1
x(0∞)

+ y(0∞),
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(6.3) x(00) = 1/x(∞0), y(00) = x(∞0)((κ0 + κ∞)/2− x(∞0)y(∞0)),

(6.4)
x(∞0)/(ε + x(∞0)) = z′′,

(1 + ε−1x(∞0))
[
−κ0 + κ∞

2
+ (ε + x(∞0))y(∞0)

]
=
−η0ε

−1 + κ∞
z′′

+ w′′.

The fiber EV (ε, t) of EV (ε) over t is a disjoint union of C2 3 (x(00), y(00)) and
four complex lines

EV (ε, t) = C2 ∪D−ε−1∞(t) ∪D0∞(t) ∪D∞0(t) ∪D∞0−(t),

where D−ε−1∞(t) := {z′ = 0}, D0∞(t) := {x(0∞) = 0}, D∞0(t) := {x(∞0) = 0}
and D∞0−(t) := {z′′ = 0}. As ε → 0, the divisors D−ε−1∞(t) and D∞0−(t) are
going to collide with each other, and thus we must look for a coodinate system
suitable to see the collision.

We first seek a coordinate system for D−ε−1∞(t) simply related to the system
(x(∞0), y(∞0)). By (6.1) and (6.3), we have

x(∞0) = ε/(−1 + z′),

and x(∞0) = −ε if z′ = 0. Therefore we introduce u′ by

(6.5) x(∞0) = −ε + u′.

A careful calculation by means of (6.1),(6.3) and (6.5) shows

y(∞0) =
η∞ε−1

u′
+
−η∞ε−1 + (κ0 + κ∞)/2

−ε + u′
− ε

(−ε + u′)2
w′.

Then, introducing v′ by

v′ =
−η∞ε−1 + (κ0 + κ∞)/2

−ε + u′
− ε

(−ε + u′)2
w′,

we have

(6.6) x(∞0) = −ε + u′, y(∞0) =
η∞ε−1

u′
+ v′.
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Note that D−ε−1∞(t) = {z′ = 0} = {u′ = 0}, and that (0, w′) and (0, v′) related by

w′ + εv′ = η∞ε−1 + (κ0 + κ∞)/2

represent the same point on D−ε−1∞(t).
We next choose a suitable coordinate system for the divisor D∞0−(t) = {z′′ =

0} which is simply related to the coordinate system (x(∞0), y(∞0)). By (6.4), we
have

x(∞0) = εz′′/(1− z′′),

and x(∞0) = 0 if z′′ = 0. Therefore we introduce u′′ by

(6.7) x(∞0) = u′′.

By making use of (6.4) and (6.7), we have

y(∞0) =
−η∞ε−1 + κ∞

u′′
+

η∞ε−1 + (κ0 − κ∞)/2
ε + u′′

+
ε

(ε + u′′)2
w′′.

Therefore, introducing v′′ by

v′′ =
η∞ε−1 + (κ0 − κ∞)/2

ε + u′′
+

ε

(ε + u′′)2
w′′,

we obtain a coordinate system (u′′, v′′), which is related to (x(∞0), y(∞0)) by

(6.8) x(∞0) = u′′, y(∞0) =
−η∞ε−1 + κ∞

u′′
+ v′′.

We can verify that D∞0−(t) = {z′′ = 0} = {u′′ = 0}, and that (0, w′′) and (0, v′′)
related by

−w′′ + εv′′ = η∞ε−1 + (κ0 + κ∞)/2

represent the same point on D∞0−(t).
Observing (6.5) and (6.8), we introduce a coordinate system (u, v) by

(6.9) x(∞0) = u, y(∞0) =
−η∞ε−1 + κ∞

u
+

η∞ε−1

u + ε
+ v.

16



It is verified that D−ε−1∞(t) = {u = −ε} and D∞0−(t) = {u = 0}.

7. Proof of THEOREM 4. In this section, we show that EIV (ε) is isomorphic
to EIV→II(ε) for each ε 6= 0.

By LEMMA 1, EIV (ε) is described as a patching of four copies of C2 ×
BIV→II(ε) via

x(00) = z′, y(00) = (ε−6/2)/z′ + w′,

x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

x(∞0) = x(∞∞),

y(∞0) = − 1/2
x(∞∞)3

− −ε−3 + 2−2/3εt

x(∞∞)2
− ε−6/2 + 2α

x(∞∞)
+ y(∞∞).

In accordance with the process in 2.3.4, we make the replacement

x(00) → ε−3(1 + 22/3ε2x(00)), y(00) → 2−2/3εy(00),

and corresponding to this,

x(∞0) → ε3x(∞0)
22/3ε2 + x(∞0)

,

y(∞0) → 2−2/3ε−5(22/3ε2 + x(∞0)){α + 1/2 + (22/3ε2 + x(∞0))y(∞0)}.

Then we have another description of EIV (ε) by patching four copies of C2 ×
BIV→II(ε) via

(7.1) ε−3(1 + 22/3ε2x(00)) = z′, 2−2/3εy(00) = (ε−6/2)/z′ + w′,

(7.2) x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

(7.3)

ε3x(∞0)
22/3ε2 + x(∞0)

= x(∞∞),

2−2/3ε−5(22/3ε2 + x(∞0)){α + 1/2 + (22/3ε2 + x(∞0))y(∞0)}

= − 1/2
x(∞∞)3

− −ε−3 + 2−2/3εt

x(∞∞)2
− ε−6/2 + 2α

x(∞∞)
+ y(∞∞).
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We see that the fiber EIV (ε, t) of EIV (ε) over t is a disjoint union of C2 3
(x(00), y(00)) and three complex lines:

EIV (ε, t) = C2 ∪D−2−2/3ε−2∞(t) ∪D∞0(t) ∪D∞∞(t),

where D−2−2/3ε−2∞(t) := {z′ = 0}, D∞0(t) := {x(∞0) = 0} and D∞∞(t) :=
{x(∞∞) = 0}. In order to see that two divisors D−2−2/3ε−2∞(t) and D∞∞(t)
collide with each other as ε → 0, we are going to choose an appropriate coordinate
system to describe the collision.

First, we seek a coordinate system to describe the divisor D−2−2/3ε−2∞(t) so
that it is simply related to (x(∞0), y(∞0)). From (7.1) and (7.2), it follows that

x(∞0) = 22/3ε2/(−1 + ε3z′),

and x(∞0) = −22/3ε2 if in particular z′ = 0. Hence we take u′ as

(7.4) x(∞0) = −22/3ε2 + u′.

From (7.1), (7.2) and (7.4), it follows that

y(∞0) =
ε−6/2

u′
− ε−6/2 + α + 1/2

−22/3ε2 + u′
− 22/3ε−1

(−22/3ε2 + u′)2
w′.

Therefore, introducing v′ as

v′ = −ε−6/2 + α + 1/2
−22/3ε2 + u′

− 22/3ε−1

(−22/3ε2 + u′)2
w′,

we have

(7.5) x(∞0) = −22/3ε2 + u′, y(∞0) =
ε−6/2

u′
+ v′.

We can verify that D−2−2/3ε−2∞(t) = {z′ = 0} = {u′ = 0}, and that the points
(0, w′) and (0, v′) related by

w′ + 22/3ε5v′ = ε3(ε−6/2 + α + 1/2)
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represent the same point on D−2−2/3ε−2∞(t).
Secondly, we choose a coordinate system for the divisor D∞∞(t) simply related

to (x(∞0), y(∞0)). Taking the first equation of (7.3) into account, we choose a
variable u′′ as

(7.6) x(∞0) = u′′.

Notice that x(∞∞) = 0 corresponds to u′′ = 0. By making use of (7.3) and (7.6),
we obtain

y(∞0) =− 21/3ε−2

u′′3
+

2−1/3ε−4 − t

u′′2
− ε−6/2 + 2α

u′′

+
ε−6/2 + α− 1/2

22/3ε2 + u′′
+

22/3ε5

(22/3ε2 + u′′)2
y(∞∞).

Therefore, by introducing v′′ by

v′′ =
ε−6/2 + α− 1/2

22/3ε2 + u′′
+

22/3ε5

(22/3ε2 + u′′)2
y(∞∞),

we have

(7.7) x(∞0) = u′′, y(∞0) = −21/3ε−2

u′′3
+

2−1/3ε−4 − t

u′′2
− ε−6/2 + 2α

u′′
+ v′′.

It is verified that D∞∞(t) = {x(∞∞) = 0} = {u′′ = 0}, and the points (0, y(∞∞))
and (0, v′′) related by

y(∞∞)− 22/3ε−1v′′ = −ε−3(ε−6/2 + α− 1/2)

represent the same point on D∞∞(t).
Lastly, by observing (7.5) and (7.7), we introduce a coordinate system (u, v)

by

(7.8)
x(∞0) =u,

y(∞0) =− 21/3ε−2

u3
+

2−1/3ε−4 − t

u2
− ε−6/2 + 2α

u
+

ε−6/2
u + 22/3ε2

+ v.
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We can verify that D−2−2/3ε−2∞(t) = {u = −22/3ε2} and D∞∞(t) = {u = 0}.

8. Proof of THEOREM 5. We show that EIII(ε) is isomorphic to EIII→II(ε)
for each ε 6= 0.

The manifold EIII(ε) is described as a patching of four copies of C2×BIII(ε)
via

x(00) = x(0∞), y(00) =
ε−3t/4
x(0∞)2

− ε−3/2 + 2α

x(0∞)
+ y(0∞),

x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

x(∞0) = x(∞η∞t), y(∞0) = − ε−3t/4
x(∞η∞t)2

+
ε−3/2

x(∞η∞t)
+ y(∞η∞t).

Acoording to the confluence process given in 2.3.5, we make the replacements

x(00) → 1 + 2εx(00), y(00) → y(00)/(2ε), t → 1 + ε2t

and corresponding to this,

x(∞0) → x(∞0)
2ε + x(∞0)

, y(∞0) → 2ε + x(∞0)
2ε

[α + 1/2 + (2ε + x(∞0))y(∞0)] .

Then we have another description of EIII(ε) by patching of four copies of C2 ×
BIII→II(ε) via

(8.1)
1 + 2εx(00) = x(0∞),

y(00)/(2ε) =
ε−3(1 + ε2t)/4

x(0∞)2
− ε−3/2 + 2α

x(0∞)
+ y(0∞),

(8.2) x(00) = 1/x(∞0), y(00) = x(∞0)(−α− 1/2− x(∞0)y(∞0)),

(8.3)

x(∞0)
2ε + x(∞0)

= x∗,
2ε + x(∞0)

2ε
[α + 1/2 + (2ε + x(∞0))y(∞0)]

= −ε−3(1 + ε2t)/4
x∗2

+
ε−3/2

x∗
+ y∗.

Here (x∗, y∗) := (x(∞η∞t), y(∞η∞t)).
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We see that the fiber EIII(ε, t) of EIII(ε) over t is a disjoint union of C2 3
(x(00), y(00)) and three complex lines:

EIII(ε, t) = C2 ∪D−ε−1/2∞(t) ∪D∞0(t) ∪D∞ε−3t/4(t),

where D−ε−1/2∞(t) := {x(0∞) = 0}, D∞0(t) := {x(∞0) = 0} and D∞ε−3t/4(t) :=
{x∗ = 0}. As ε tends to 0, the divisors D−ε−1/2∞(t) and D∞ε−3t/4(t) collide with
each other. In the following, we look for an appropriate coodinate system which is
suitable to see the collision of D−ε−1/2∞(t) and D∞ε−3t/4(t).

We first obtain an coodinate system of a neighborhood of D−ε−1/2∞(t), so that
it is related with (x(∞0), y(∞0)) in simple form. Since the right-hand side of

x(∞0) = 2ε/(−1 + x(0∞))

is −2ε if x(0∞) = 0, we introduce a variable u′ by

(8, 4) x(∞0) = −2ε + u′.

We see that

y(∞0) =− (ε−2 + t)/2
u′2

− ε−3/2 + 2α

u′

+
ε−3/2 + α− 1/2

−2ε + u′
− 2ε

(−2ε + u′)2
y(0∞),

and then introduce a variable v′ by

v′ =
ε−3/2 + α− 1/2

−2ε + u′
− 2ε

(−2ε + u′)2
y(0∞).

The relation between (x(∞0), y(∞0)) and (u′, v′) is given by

(8.5) x(∞0) = −2ε + u′, y(∞0) = − (ε−2 + t)/2
u′2

− ε−3/2 + 2α

u′
+ v′,

and D−ε−1/2∞(t) = {x(0∞) = 0} = {u′ = 0}.
We next obtain an appropriate coodinate system of a neighborhood of D∞ε−3t/4(t).

Since the right-hand side of

x(∞0) = 2εx∗/(1− x∗)
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is 0 if x∗ = 0, we introduce a variable u′′ by

(8.6) x(∞0) = u′′.

Then we have

y(∞0) = − (ε−2 + t)/2
u′′2

+
ε−3/2

u′′
− ε−3/2 + α + 1/2

2ε + u′′
+

2ε

(2ε + u′′)2
y∗.

Therefore, introducing a variable v′′ by

v′′ = −ε−3/2 + α + 1/2
2ε + u′′

+
2ε

(2ε + u′′)2
y∗,

we have

(8.7) x(∞0) = u′′, y(∞0) = − (ε−2 + t)/2
u′′2

+
ε−3/2

u′′
+ v′′.

Now, observing (8.5) and (8.7), we take a coordinate system (u, v) defined by

(8.8)
x(∞0) =u,

y(∞0) =− (ε−2 + t)/2
u2

+
ε−3/2

u
− (ε−2 + t)/2

(u + 2ε)2
− ε−3/2 + 2α

u + 2ε
+ v.

Then we can verify

D−ε−1/2∞(t) = {u = −2ε}, D∞ε−3t/4(t) = {u = 0}.
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