Wire deconstructionism of two-dimensional topological phases

Christopher Mudry, Titus Neupert, Claudio Chamon, and Ronny Thomale
Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
Physics Department, Boston University, Boston, Massachusetts 02215, USA
Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

A scheme is proposed to construct integer and fractional topological quantum states of fermions in two spatial dimensions. We devise models for such states by coupling wires of non-chiral Luttinger liquids of electrons, that are arranged in a periodic array. Which inter-wire couplings are allowed is dictated by symmetry and the compatibility criterion that they can simultaneously acquire a finite expectation value, opening a spectral gap between the ground state(s) and all excited states in the bulk. First, with these criteria at hand, we reproduce the tenfold classification table of integer topological insulators, where their stability against interactions becomes immediately transparent in the Luttinger liquid description. Second, we construct an example of a strongly interacting fermionic topological phase of matter with short-range entanglement that lies outside of the tenfold classification. Third, we expand the table to long-range entangled topological phases with intrinsic topological order and fractional excitations.