Theory of antisymmetric spin-pair dependent electric polarization in multiferroics

S. MiyaharaA and N. FurukawaB

ADepartment of Applied Physics, Fukuoka University
BDepartment of Physics and Mathematics, Aoyama Gakuin University

We investigate magnetoelectric couplings between an electric polarization and an antisymmetric spin pair $S_i \times S_j$ in a d-p model on a distorted lattice based on a perturbation calculation. We microscopically derive a generic form of the antisymmetric spin-pair dependent electric polarization

$$\begin{pmatrix}
 p_{x}^{\text{AS}} \\
 p_{y}^{\text{AS}} \\
 p_{z}^{\text{AS}}
\end{pmatrix} =
\begin{pmatrix}
 d_{xx}^{x} & d_{xy}^{x} & d_{xz}^{x} \\
 d_{yx}^{y} & d_{yy}^{y} & d_{yz}^{y} \\
 d_{zx}^{z} & d_{zy}^{z} & d_{zz}^{z}
\end{pmatrix}
\begin{pmatrix}
 S_{y}^{i} S_{z}^{j} - S_{z}^{i} S_{y}^{j} \\
 S_{z}^{i} S_{x}^{j} - S_{x}^{i} S_{z}^{j} \\
 S_{x}^{i} S_{y}^{j} - S_{y}^{i} S_{x}^{j}
\end{pmatrix}.$$

On lower symmetry bonds, various elements of the tensor d are non-zero besides the coupling due to the well-known spin-current mechanism. Although the non-spin-current couplings cancel out due to the symmetry on a high symmetry bond, the magnitude of them can be the same order of the spin-current coupling on a lower symmetry bonds. In addition, some of the non-spin-current couplings can be non-uniform on a crystal and thus p_{AS} shows the possibility that various non-collinear magnetic structures, e.g., canted antiferromagnetic and proper screw states, show multiferroic behaviors as shown in the figure.