
Implementation and Evaluation of Nested Task and

Data Parallelism for High Performance Fortran

within the ADAPTOR Compilation System

(Working Paper, unpublished)

Thomas Brandes

Institute for Algorithms and Scienti�c Computing (SCAI)
German National Research Center for Information Technology (GMD)

Schlo� Birlinghoven, D-53754 St. Augustin, Germany
Tel.: +49-2241-142492, Fax: +49-2241-142181

e-mail: brandes@gmd.de

Abstract

Task parallelism has been proven to be useful for applications like real-time signal
processing, branch and bound problems, and multidisciplinary applications. The new
standard HPF 2.0 of the data parallel language High Performance Fortran (HPF) provides
approved extensions for task parallelism that allow nested task and data parallelism.

Unfortunately, these extensions allow the spawning of task but do not allow interaction
like synchronization and communication between tasks during their execution and there-
fore might be too restrictive for certain application classes. E.g., they are not suitable for
expressing the complex interactions among asynchronous tasks as required by multidisci-
plinary applications. Widely accepted parallel programming paradigms like farming are
not expressible.

This paper describes the support of task parallelism in High Performance Fortran and
its realization within the ADAPTOR HPF compilation system. This system supports
task parallelism as speci�ed in the HPF 2.0 standard, but also allows interaction between
tasks during their lifetime by providing a task library. This task library o�ers routines for
exchanging distributed data between di�erent data parallel tasks. Some example programs
show the easy use of the concepts and the e�ciency of this approach.

Keywords: Data Parallelism, Task Parallelism, High Performance Fortran

1 Introduction

High Performance Fortran (HPF) [13, 14] is a data parallel, high level programming language

for parallel computing that might be more convenient than explicit message passing and that

should allow higher productivity in software development. With HPF, programmers provide

directives to specify processor and data layouts, and express data parallelism by array operations

or by directives specifying independent computations.

Users are very reluctant to use HPF because many applications do not completely �t into

the data parallel programming model. The applications contain data parallelism, but task

1

parallelism is needed to represent the natural computation structure or to enhance performance.

Typical examples are the pipelining of data parallel tasks for image and signal processing to

improve performance, multiblock codes are more naturally programmed as interacting tasks,

and applications that interact with external devices. Many results verify that a mixed task/data

parallel computation can outperform a pure data parallel version (e.g. see [10]) if the granularity

of the data is not su�cient.

Stage 1 Stage 2 Stage 3

Task2

Task1 Task 4

Task 3

Figure 1: Pipelined execution of data parallel tasks.

Another important application area is the coupling of di�erent simulation codes. Examples

are simulations in the areas of uid-structure interaction, magneto-hydro-dynamics, acoustics,

vibrations of structures due to electromagnetic forces, and sono-chemistry. Such applications

combine a number of programs representing di�erent disciplines into an integrated system of

interacting processes. Coupling communication libraries like COCOLIB [2] have been developed

to couple di�erent simulation codes written in MPI. In the same way, it should be possible to

couple di�erent HPF simulation codes.

Di�erent approaches for supporting task parallelism are possible. Some approaches try to

identify task parallel structures automatically, but this complicates compiler development and

performance tuning. Language extensions can provide the necessary execution model for task

parallelism but have the need of standardization. Library support on its own is very convenient

as a starting point, but more e�ective if embedded in the language.

Some features supporting task parallelism are available as approved extensions in HPF 2.0[14].

The TASK REGION construct provides the means to create independent coarse-grain tasks, each

of which can itself execute a data-parallel or nested task-parallel computation. This kind of task

parallelism has been implemented and evaluated within the public domain HPF compilation

system ADAPTOR [5]. Currently, ADAPTOR is the only HPF compiler supporting the task

model as de�ned in the new HPF 2.0 standard.

But the HPF task model does not allow interaction between the independent tasks during

their execution. The introduction of a task library that allows interaction of HPF data parallel

tasks during their lifetime enhances the possibilities of the current model. This paper describes

the functionality of such a library and shows that it goes conform with the existing language

concepts. The implementation of the task library in an existent HPF compiler should be rather

straightforward like it was in the ADAPTOR compilation system.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3 gives

2

a short introduction to the ADAPTOR HPF compilation system. Section 4 shows the use of the

ON directive in HPF that is needed as a basis for task parallelism. The execution of subprograms

by only a processor subset involves some problems that are discussed in Section 5. Section 6

summarizes the support of task parallelism in HPF 2.0 and discusses its limitations regarding

task interaction. Section 7 describes the HPF task library as our approach for introducing

interactions between disjoint tasks. This HPF task library can also be used for communication

between the processors when a local routine is executed as Section 8 will point out. The example

in Section 11 describes in detail how to realize a load-driven pipelined task farm with our task

library.

2 Related Work

The need of task parallelism and its bene�ts have been discussed by many authors and at many

places (e.g. in [9]). The promising possibility of integrating task parallelism within the HPF

framework has attracted much attention [17, 12, 14, 7, 6]

An integrated task and data parallelism model has been implemented in the Fx compiler at

Carnegie Mellon [19]. It is mainly based on the speci�cation of subgroups and the assignment

of arrays, variables and computations to the subgroups. Communication between the tasks

must be visible at the coordination level speci�ed as a TASK REGION. The execution model is

not based on message passing, programs can still be executed in the serial model. A variation

of this model has become an approved extension for HPF 2.0 [14].

Kohr, Foster et al. [10] developed a coordination library based on MPI to exchange dis-

tributed data structures between di�erent HPF programs. The data parallel language has not

to be extended at all. Unfortunately, their implementation supports only coupling of di�erent

HPF programs, but not of di�erent HPF tasks created within a task region. But the ideas are

very similar when generalized for nested task parallelism.

Banerjee et al. [17] have an approach where the programmer has to specify an input/output

list for all the HPF tasks involved. Tasks can be either PURE HPF-like subroutines or simple

statements. Since the user does not specify neither the allocation of tasks on speci�c processor

subsets nor explicit communications between tasks, the compiler has to extract correspond-

ing information and to guarantee proper allocations and communications. The type of task

interaction that can be speci�ed is still deterministic.

Zima, Mehrotra et al. [7, 6] propose an interaction mechanism using shared modules with

access controlled by a monitor mechanism. A form of remote procedure call (RPC) is used to

operate on data in the shared module. The monitor mechanism ensures mutual exclusion of

concurrent RPC's to the same module. This concept enhances modularity and is particularly

good for multidisciplinary applications. Due to the use of an intermediate space, it appears less

well suited for �ne-grained or communication-intensive applications.

Orlando and Perego [15] provide run-time support for the coordination of concurrent and

communicating HPF tasks. COLTHPF provides suitable mechanisms for starting distinct data-

parallel tasks on disjoint group of processors. It also allows the speci�cation of the task inter-

action on a high level from which they generate automatically corresponding code skeletons.

For the implementation of communication between the data parallel tasks they use the pitfalls

algorithm [16].

The coupling communication library COCOLIB [2] has been developed to couple di�erent

simulation codes written in MPI. The ideas are similar to the communication between two or

more di�erent data parallel programs but here the data parallel programs are also implemented

3

in MPI. Also the functionality of this library is very high by providing features like inter- and

extrapolation between the data structures of the di�erent applications.

3 The ADAPTOR HPF Compilation System

ADAPTOR (Automatic Data Parallelism Translator) is a public domain HPF compilation

system developed at GMD for compiling data parallel HPF programs to equivalent message

passing programs [5].

3.1 Overview of the System

The latest release of ADAPTOR supports nearly the full HPF 2.0 base language and many of

the approved extensions [3]. Support of the ON directive and related clauses exists already for

a longer time.

By means of a source-to-source transformation, ADAPTOR translates the data parallel pro-

gram to an equivalent SPMD program (single program, multiple data) that runs on all available

nodes. Beside the translation system, a runtime system called DALIB (distributed array library)

has been developed that will be linked with the generated SPMD program (see Figure 2).

fadapt

SPMD (message passing) Program

(FORTRAN 77 + DALIB calls) compile, link Executable*
Parallel

ADAPTOR

System
DALIB

Data Parallel Program

(High Performance Fortran)

Figure 2: Overview of ADAPTOR.

3.2 Availability

The source �les of ADAPTOR, documentation �les in PostScript and a number of example pro-

grams are available via ftp [4]. The latest version 6.1 of ADAPTOR supports task parallelism

as presented in this paper.

4 The ON Directive of HPF

The introduction of task parallelism in High Performance Fortran is strongly connected with the

ON directive that allows the user to control explicitly the distribution of computations among

the processors of a parallel machine. It allows dividing processors into subgroups which is

essential for task parallelism.

4

4.1 Syntax and Semantic

There are two avors of the ON directive: a single-statement form and a multi-statement form.

!hpf$ processors PROCS(4)

real, dimension (N) :: A

!hpf$ distribute A(block) onto PROCS(3:4)

...

!hpf$ on (PROCS(1:2))

call SUB1()

!hpf$ on home (A) begin

call SUB2()

call SUB3()

!hpf$ end on

In the HOME clause, the user can specify a processor array or a processor subset or an array

(template) or a subsection of an array (template).

The ON directive restricts the active processor set for a computation to those processors

named in the home, or to the processors that own at least one element of the speci�ed array

or template. It should be noted that the ON directive only advises the compiler to use the

corresponding processors to perform the ON statement or block. But the compiler should inform

the user if it overrides the user's advice. Not respecting the ON directive can suppress the task

parallelism intended by the user.

4.2 HOME Speci�cations

All HOME speci�cations as proposed in the HPF 2.0 standard can be used within ADAPTOR.

� If processors are named in the home, ADAPTOR takes exactly the speci�ed processor
subset as active processors. Values in the subscript must not be known at compile time.

subroutine (NP, IP1, IPS)

integer :: NP, IP1, IPS

!hpf$ processors P(1:NP)

...

!hpf$ on (P(IP1:IPS))

<block>

� If the home is speci�ed by an array or template, scalar subscripts are specifying exactly
one processor while slices as subscripts usually take all processors of this dimension in the
active processor subset.

real, dimension (N,N) :: A

!hpf$ processors P(NP1,NP2)

!hpf$ distribute (cyclic(5),cyclic(10)) onto P :: A

...

!hpf$ on home (A(11:14,12))

<block> ! on P(1:NP1,IP), IP owner of 12 in 2nd dim

� In contrary to the HPF 2.0 standard, ADAPTOR also allows vector-subscripts for pro-

cessor subsets. This gives more exibility in mapping data to certain processors and for

the selection of processors executing a task.

5

!hpf$ processors P (6)

integer, dimension (4) :: IND = (/ 1, 3, 4, 6 /)

real, dimension (N) :: A1, A2

!hpf$ distribute A1 (block) onto P

!hpf$ distribute A2 (block) onto P(IND)

...

!hpf$ on (P(IND))

call TASK (A2, N)

4.3 Data Transfers with the ON Directive

If a statement or a block should be executed by a processor subset, the compiler must make

sure that all data is mapped onto the corresponding active processors. This data transfer can

involve other processors that are not part of the active processors.

� All dummy arguments must be mapped onto the active processors. By this way, dummy
arrays are local within the subprogram that is only executed by a processor subset.

integer, parameter :: N = 100

!hpf$ processors PROCS(4)

real, dimension (N) :: A

!hpf$ distribute A(block) onto PROCS

...

!hpf$ on (PROCS(1:2))

call TASK (A,N)

While the dummy argument N is available on the active processors, the array A must be
redistributed. The compiler might create implicitly the following code:

!hpf$ redistribute A(block) onto PROCS(1:2)

!hpf$ on (PROCS(1:2))

call TASK (A,N)

!hpf$ redistribute A(block) onto PROCS

� All local objects of the called subprogram must be mapped onto the active processors.

The compiler will create temporary data and inserting copy-in and copy-out communication

for non-local data. Any replicated data changed on a processor subset has to be made consistent

afterwards. All processors that were not active must get copies of the new values.

As HPF allows the mapping of arrays to processor subsets, the exploitation of task paral-

lelism is more convenient. Unfortunately, the mapping of scalars to processor subsets is only

possible via an alignment.

real S

!hpf$ processors PROCS (4)

!hpf$ template T (2)

!hpf$ distribute T(block) onto PROCS (1:2)

!hpf$ align S with T(*)

A special directive is very convenient to tell the compiler that certain replicated variables
should have only an incarnation on a processor subset. By this way, the compiler will not have
to guarantee consistency between all processors.

6

real S, A(10)

!hpf$ processors PROCS (4)

!hpf$ onto PROCS (1:2) :: S, A

4.4 Restrictions for the ON Directive

Certain statements cannot be executed by a given processor subset, e.g.:

� Allocation and deallocation of an array is only possible if all data is only mapped to the
active processors.

!hpf$ processors PROCS (4)

real, dimension (:), allocatable :: A

!hpf$ distribute A(block) onto PROCS (1:2)

...

!hpf$ on (PROCS(1:2))

allocate (A) ! is allowed

!hpf$ on (PROCS(1:2))

deallocate (A) ! not possible

� Any redistribution must include all processors involved in it.

4.5 Coupling of the ON and RESIDENT Directives

Unfortunately, compilers are conservative and can also introduce synchronization or commu-

nication where it is not really necessary. The RESIDENT directive tells the compiler that only

local data is accessed and no communication has to be generated. This guarantees that only

the speci�ed processors are involved and the code can be skipped de�nitively by the other

processors.

!hpf$ on (PROCS(1:2)), resident

call TASK1 (A1,N)

!hpf$ on (PROCS(3:4)), resident

call TASK2 (A2,N)

The RESIDENT directive is very useful for task parallelism where subroutines are called.

It gives the compiler the important information that within the routine only resident data is

accessed. This might also allow the compiler to respect the speci�ed HOME where it was not

possible before.

4.6 Parallelism with the ON Directive

The ON directive on its own inserts already task parallelism in a natural way. If the data is

available on the speci�ed processor set and no communication is required, the statement can

be skipped by all the other processors. Code blocks mapped to disjoint processor sets will be

executed in parallel.

real, dimension (N) :: A1, A2

!hpf$ processors PROCS(4)

!hpf$ distribute A1 (block) onto PROCS(1:2)

7

!hpf$ distribute A2 (block) onto PROCS(3:4)

...

!hpf$ on (PROCS(1:2))

call TASK1 (A1,N)

!hpf$ on (PROCS(3:4))

call TASK2 (A2,N)

The code blocks might not be executed simultaneously if communication is involved. This

will be the case if one of the code blocks uses data that has no incarnation on the speci�ed

processor subset or if it de�nes data that has also incarnations on other processors.

5 Compiling Subprograms for Processor Subsets

With the introduction of task parallelism, every subprogram in HPF must be compiled in

such a way that it can be executed on any processor subset. The compiler cannot make any

assumptions on which processors the code is executed at runtime. It might also be possible

that the code will be executed several times on completely di�erent processor subsets.

subroutine TASK (A, B, N)

real, dimension (N) :: A, B

!hpf$ distribute (block) :: A, B

real, dimension (N) :: C

!hpf$ distribute (block) :: C

...

end subroutine TASK

This implies the following strategies for the HPF compiler:

� Local arrays will be allocated only on the active processors, and not on all physical

processors. So local arrays are always resident on the active processor subset.

� Dummy arrays are assumed to be available on the active processors. The calling routine

is responsible for remapping arguments to the active processor subset so that the data is

resident on the active processors (see Section 4.3).

� Theoretically, global arrays can be allocated on any processor subset. In the following

example, the global array A might be allocated onto all processors, while the local array

B is only allocated on a processor subset.

module DATA

integer, parameter :: N = 10000

real, dimension (N,N) :: A

!hpf$ distribute A (block, block)

end module DATA

subroutine SUB (..)

use DATA

real, dimension (N,N) :: B

!hpf$ distribute B (block, block)

B = A

end subroutine SUB

8

In the current version of ADAPTOR, the compiler assumes that all global data will be

resident on the active processors.

� The global use of the PROCESSORS directive causes troubles when the corresponding pro-

cessor array includes processors that are not in the active processor subset.

module DATA

!hpf$ processors P(3,3) ! universal processor arrangement

end module DATA

subroutine SUB (..)

use DATA

real, dimension (N,N) :: B

!hpf$ distribute B (block, block) onto P ! be careful

...

end subroutine SUB

The HPF standard provides the subset directive to de�ne processor arrangements that

are not universal. This feature is not supported within ADAPTOR yet.

The access to global arrays causes serious problems for HPF compilers generating SPMD

code based on message passing. Data can be on processors that are not in the active processor

subset and these processors cannot send data needed by other processors or receive data de�ned

by other processors. The correct implementation would require one-sided communication.

ADAPTOR always assumes that access to global data is resident. Unfortunately, this implies

a certain responsibility for the user.

6 Task Parallelism in HPF

A code block guided by the ON and RESIDENT directive is called a lexical task. An execution

instance of a lexical task is called an execution task. Every execution task is associated with a

set of active processors on which the task is executed.

6.1 The TASK REGION Directive

Though the ON and RESIDENT directive on their own allow task parallelism, HPF 2.0 provides

the TASK REGION construct. A task region surrounds a certain number of lexical tasks.

real, dimension (N,N) :: A1,A2

!hpf$ processors PROCS(4)

!hpf$ distribute A1 (*,block) onto PROCS(1:2)

!hpf$ distribute A2 (*,block) onto PROCS(3:4)

!hpf$ task_region

!hpf$ on home (A1), resident

call TASK1 (A1,N)

!hpf$ on home (A2), resident

call TASK2 (A2,N)

!hpf$ end task_region

9

The task region has some advantages:

� clear speci�cation where task parallelism appears,

� it provides syntactical restrictions (every ON directive must be combined with the RESIDENT

directive),

� the user guarantees no I/O interferences between the di�erent execution tasks.

6.2 Pipelined Execution of Data Parallel Tasks

In the following example, the data dependencies due to the array assignment result in a serial

execution of the two tasks. Nevertheless, parallelism is achieved due to the outer loop around

the task region (see also example in Section 10).

real, dimension (N,N) :: A1,A2

!hpf$ processors PROCS(4)

!hpf$ distribute A1 (*,block) onto PROCS(1:2)

!hpf$ distribute A2 (*,block) onto PROCS(3:4)

! define a task region, otherwise home will be ignored

do ITER = 1, NITERS

!hpf$ task_region

!hpf$ on home (A1), resident

call TASK1 (A1,N)

A1 = A2

!hpf$ on home (A2), resident

call TASK2 (A2,N)

!hpf$ end task_region

end do

6.3 Discussions

The model allows nested task and data parallelism. There is no restriction that execution tasks

within one task region are executed on disjoint processor subgroups. The compiler can ignore

the ON directive without changing the semantic of the program. Task interaction must be visible

at the coordination level which is the code within the task region outside the lexical tasks.

The main disadvantage is the lack of any possibility for task interaction during the execution

of the tasks.

7 The HPF Task Library

This section introduces the HPF task library that is intended to allow interaction between

di�erent data parallel tasks via message passing.

10

7.1 Problems and Design Issues

Though HPF provides already features for task-parallel computations, task interaction involves

some new problems that have to be addressed:

� Any task interaction can only be useful if the parallel execution of the tasks is guaranteed.

For this reason, all execution tasks must be executed on disjoint processor subsets. This

is not mandatory for the task concept of HPF. With task interaction, an HPF program

might no longer run on a serial machine.

� Task interaction requires the unique identi�cation of tasks, e.g. by a task identi�er, that

is used to specify the source and destination of message passing.

Providing task interaction via a Fortran 90 library has the following advantages:

� The embedding of task interaction in the language would complicate the whole develop-

ment.

� The Fortran 90 binding allows to pass whole arrays or subsection of arrays to the routines.

� Compared to the MPI standard [11] that provides routines for the exchanging of data

between serial processes, the exchanging of data between data parallel processes must be

more synchronous.

In the �rst place, it might have been useful to de�ne the message passing routines between

data parallel tasks in analogy to MPI. But there is not even a standardized Fortran 90 binding

for the MPI routines. The advantage of optional arguments as well as of array and array section

arguments is enormous.

The follwoing di�erences exist when comparing the concepts of MPI and the HPF task

library:

� The use of derived datatypes is not necessary due to the HPF/Fortran 90 binding that

also allows non-contiguous data in their arguments.

� The routines do not require a communicator as the communicator is implicitly given by

the current task nesting level.

� Sending of distributed data must be synchronous to exchange distribution information.

Furthermore, the task library is not intended to be realized compiler-independently but as

a part of the HPF compiler. Most of the necessary functionality must be available in the HPF

runtime system of an HPF compiler. As internal descriptors for arrays and their mappings and

for communication schedules are far away from any standardization, the task library is most

e�ciently implemented by the compiler vendor.

7.2 Task Numbering in a TASK REGION

The implementation of a task numbering requires that the execution of tasks does not depend

on any values computed within the tasks. The user has to assert this property by the keyword

INDEPENDENT.

11

It also guarantees that there are no dependencies at the coordination level and all tasks will

be really invoked simultaneously. All execution tasks within a parallel task region get a task

identi�er starting with 1. All tasks together build a context that is known for every task.

The following example shows how to invoke data parallel tasks for pipelined data parallelism

as presented in Figure 1.

!hpf$ processors PROCS (20)

...

!hpf$ independent task_region

!hpf$ on (PROCS(1:4)), resident ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(5:10)), resident ! will be task 2

call STAGE2 ()

!hpf$ on (PROCS(11:16)), resident ! will be task 3

call STAGE2 ()

!hpf$ on (PROCS(17:20)), resident ! will be task 4

call STAGE3 ()

!hpf$ end task_region

The implementation of the independent TASK REGION must observe that every processor has

to de�ne all tasks before it branches into the code of the task to which it belongs. The de�nition

of tasks in a loop might be possible.

!hpf$ processors PROCS (20)

...

!hpf$ independent task_region

do I = 0, 3

!hpf$ on(PROCS (I*5+1:I*5+5)), resident

call TASK ()

end do

!hpf$ end task_region

7.3 Task Initialization and Identi�cation

Within any data parallel task, the HPF TASK LIBRARY can be used to have access to the routines

for interaction between di�erent tasks.

subroutine TASK ()

use HPF_TASK_LIBRARY

...

end subroutine TASK

The following subroutines support the initialization and termination of data parallel tasks.

They might already called implicitly when the data parallel tasks are invoked.

subroutine HPF_TASK_INIT ()

subroutine HPF_TASK_EXIT ()

The call of these routines is not mandatory but might assert additional runtime checks.

They could verify at runtime that the tasks of the current context are really mapped to disjoint

12

processor subgroups. Furthermore, at the end it could be veri�ed that there are no pending

messages between the tasks.

The following subroutines return the size (number of data parallel tasks in the current

context) and the rank of the calling task (1 � rank � size).

subroutine HPF_TASK_SIZE (size)

integer, intent(out) :: size

subroutine HPF_TASK_RANK (rank)

integer, intent(out) :: rank

7.4 Coupling of Data Parallel Programs

The HPF Task Library allows also the coupling of separately compiled data parallel programs.

program TASK1 program TASK2

use HPF_TASK_LIBRARY use HPF_TASK_LIBRARY

... ...

call HPF_TASK_INIT () call HPF_TASK_INIT ()

call HPF_TASK_SIZE (SIZE) call HPF_TASK_SIZE (SIZE)

call HPF_TASK_RANK (RANK) call HPF_TASK_RANK (RANK)

! RANK = 1, SIZE = 2 ! RANK = 2, SIZE = 2

... ...

call HPF_TASK_EXIT () call HPF_TASK_EXIT ()

end program TASK1 end program TASK2

Some parallel architectures provide the possibility of loading distinct executables on distinct

nodes. Then the data parallel programs will be executed on disjoint processor subsets that are

speci�ed on an outer level. The task initialization guarantees that all data parallel tasks know

the current task context.

The initialization in the HPF runtime system has to verify that di�erent executables are

loaded. Otherwise all data parallel tasks would deliver SIZE=1 and RANK=1. The usual way to

guarantee the parallel execution of HPF tasks is to create a task �le (e.g. TASKS) that contains

the corresponding task names and task sizes.

The ADAPTOR HPF compiler uses the environment variable TASK FILE that must be set

with the name of the task �le. This environment variable will be checked at runtime and

the corresponding creation of HPF tasks initiated. The parallel machine itself must provide

a mechanism to start the di�erent executables on the nodes of the parallel machine. The

numbering and execution of the executables must correspond to the entries in the task �le.

setenv TASK_FILE TASKS

content of task file TASKS

STAGE1 2

STAGE2 3

STAGE2 3

STAGE3 2

13

7.5 Dynamic Tasking

Processor subsets in the ON directive must not be known at compile time. Therefore the user

can implement algorithms on its own to compute the processor subsets for the scheduling of his

data parallel tasks.

!hpf$ processors PROCS (number_of_processors())

integer P, P1, P2, P3, P4

...

P = number_of_processors()

call schedule (P, P1, P2, P3, P4)

!hpf$ independent task_region

!hpf$ on (PROCS(1:P1)) ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(P1+1:P1+P2)) ! will be task 2

call STAGE2 ()

!hpf$ on (PROCS(P1+P2+1:P1+P2+P3) ! will be task 3

call STAGE2 ()

!hpf$ on (PROCS(P-P4+1:P) ! will be task 4

call STAGE3 ()

!hpf$ end task_region

There are no mechanisms for the creation or termination of task processes at runtime. Tasks

can only be de�ned as subtasks within the current context. Support of task migration can be

an option of the runtime system but is not part of the language or library. During the task

execution the processor subset is �xed.

7.6 Nested Task Parallelism

Task parallelism can be nested. Every independent TASK REGION de�nes a set of data parallel

talsk, in each task new subtasks can be created hierarchically.

T 1a T 1b T 2a
T 2b

T 2c

T 3a

T 3b

Task 3Task 2Task 1

Figure 3: Task interaction for nested task parallelism.

Task interaction is only possible between the tasks within one context. In the example of

Figure 3, task communication is possible between the tasks TASK 1, TASK 2 and TASK 3 as

long as they are not spawned into subtasks. When TASK 2 is divided into the three subtasks

TASK 2a, TASK 2b and TASK 2c, only communication between these subtasks is possible. Task

communication between e.g. TASK 1a and Task 2a is not possible.

14

7.7 Point-to-Point Communication between Data Parallel Tasks

For the sending of data (scalars, arrays or array sections), the task identi�er of the target task

must be speci�ed.

subroutine HPF_SEND (data, dest, tag, order)

<type>, dimension <>, intent(in) :: data

integer, intent (in) :: dest

integer, intent (in), optional :: tag

integer, dimension(:), intent(in), optional :: order

The ORDER argument must be of type integer, rank one, and of size equal to the rank of

DATA. Its elements must be a permutation of (1; 2; :::; n), where n is the the rank of the data.

If the order argument is available, the axes of the data will be permuted.

call HPF_SEND (data=arr, dest=pid, order = (/1, 3, 2/))

call HPF_SEND (data=TRANSPOSE (arr, order = (/1, 3, 2/)), dest=pid)

The receiving of data is similar, but without the ORDER argument. Every send must have a

matching receive.

subroutine HPF_RECV (data, source, tag)

<type>, intent(out) :: data

integer, intent (in), optional :: source

integer, intent (in), optional :: tag

integer, parameter :: HPF_ANY_SOURCE = -1

integer, parameter :: HPF_ANY_TRAG = -1

Due to the Fortran 90 binding, the routines HPF SEND and HPF RECV can be called with array

arguments and the arguments can be named. This makes the use of the routines easier and

better readable.

subroutine TASK1 (N) subroutine TASK2 (N)

use HPF_LIBRARY use HPF_LIBRARY

integer, intent (in) :: N integer, intent (in) :: N

real, dimension (N,N) :: A real, dimension (N,N) :: B

!hpf$ distribute A (block,block) !hpf$ distribute B (*,block)

... ...

call HPF_SEND (data=A, dest=2) call HPF_RECV (data = B, source=1)

... ...

Figure 4 shows the communication pattern between the single processors if TASK 1 runs on

a 2� 2 processor subset and TASK 2 on a processor subset of three processors.

The implementation of point-to-point communication between data parallel tasks results in

communication between the processors of the two processor subgroups that are involved. In

fact, the implementation of these routines should be straightforward for all HPF compilers. For

the above example, the communication patterns are exactly the same as for the following HPF

program:

15

Task 2: B(*,block)

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

P=6P=5

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Task 1: A(block,block)

P=7P=2

P=1 P=3

P=4

>5 >6 >7

>5 >6 >6 >7

>6 <1 <1 <3 <3

<2 <2 <4 <4

Figure 4: Example of point-to-point communication between data parallel tasks.

real, dimension (N,N) :: A, B

!hpf$ processors Q(1:7)

!hpf$ processors P(2,2)

!hpf$ distribute A (block,block) onto P

!hpf$ distribute B (*,block) onto Q(5:7)

... ...

B = A

The only di�erence is that due to the local allocation of the arrays in the subgroups the

exchange of the mapping information (descriptor exchange) is necessary.

The following restrictions are given:

� If the tasks are not really executed concurrently, the code might result in a deadlock.

� Every send must have a corresponding receive as otherwise the communication will conict

with compiler generated communication outside the task region.

� The sending and receiving of arrays is always blocking.

� The source argument is optional. By this way, it is possible to receive a message from an

arbitrary task. But only scalar data can be received from any processor.

7.8 Persistent Communication Requests

The point-to-point communication between two data parallel tasks causes a certain overhead

due to the exchanging of the mapping information. This overhead as well as the computation

of the schedule between the single processors of the tasks can be reduced by introduction of

internal handles.

subroutine HPF_SEND_INIT (data, dest, request, tag, order)

integer, intent (in) :: dest

<type>, intent (in) :: data

integer, intent (out) :: request

16

integer, intent (in), optional :: tag

integer, dimension(:), intent(in), optional :: order

subroutine HPF_RECV_INIT (data, source, request, tag)

integer, intent (in) :: source

<type>, intent (out) :: data

integer, intent (out) :: request

integer, intent (in), optional :: tag

subroutine HPF_TASK_COMM (request)

integer, intent (in) :: request

The use of these routines might cause serious problems when the distribution or sizes of

data has changed.

7.9 Other Routines

� Collective communication like in MPI might also be useful for HPF tasks. Especially the
broadcast of data and the barrier proved to be very useful. It should be observed that the
context of these operations is given by the current task context. A barrier synchronizes
the tasks of the current context, not the processors within this task.

subroutine HPF_BCAST (data, root)

<type>, intent (inout) :: data

integer, intent (in), optional :: root

subroutine HPF_BARRIER ()

� Sending and receiving of distributed data must be assumed to be blocking. When exe-
cuting shift operations across a chain of tasks or when two tasks are exchanging data,
one needs to order the sends and receives correctly (e.g. even tasks send, then receive,
odd tasks receive �rst, then send) so as to prevent cyclic dependencies that may lead to
deadlock. When using a send-receive routine, the system takes care of these issues.

subroutine HPF_SEND_RECV (send_data, dest, recv_data, source,

send_tag, recv_tag, order)

integer, intent (in) :: dest, source

<type>, intent(in) :: send_data

<type>, intent(out) :: recv_data

integer, intent (in), optional :: send_tag

integer, intent (in), optional :: recv_tag

integer, dimension(:), intent(in), optional :: order

7.10 Comparison with Task Coordination in a TASK REGION

There is a strong and absolutely intended relation between task interaction within the tasks

via the HPF task library and task coordination within a TASK REGION. The following example

realizes a typical pipelined computation using the TASK REGION construct of HPF. The subrou-

tines Task1 and Task2 have only interaction with each other on the coordination level through

their arguments.

17

do IT = 1, NITER subroutine TASK1(A)

!hpf$ task_region < work on A>

!hpf$ on home (A) end subroutine TASK1

call TASK1 (A)

B = A subroutine TASK2(B)

!hpf$ on home (B) < work on B>

call TASK2 (B) end subroutine TASK2

!hpf$ end task_region

end do

The same computation can be realized with independent tasks that interact with each other

during their lifetime.

!hpf$ independent task_region

!hpf$ on home (A)

call TASK1 (A)

!hpf$ on home (B)

call TASK2 (B)

!hpf$ end task_region

subroutine TASK1 (A) subroutine TASK2 (B)

use HPF_TASK_LIBRARY use HPF_TASK_LIBRARY

do IT = 1, NITER do IT = 1, NITER

<work on A> recv (data=B, source=1)

send (data=A, dest=2) <work on B>

end do end do

Comparing these two concepts, the following di�erences should be observed:

� Task interaction within the TASK REGION allows the program to be run also on a serial

machine.

� Within a TASK REGION, all information about the mapping of the arguments is available.

No exchange of descriptors or distribution information is necessary.

� Within a TASK REGION no new allocated data of the tasks (e.g. local variables) can be

exchanged.

� Communication between tasks in the TASK REGION is deterministic. Only task interaction

within the task allows the receiving of values from any other task.

� HPF does not really allow to map scalar variables to processor subsets. Assignments to
scalar variables within a TASK REGION can destroy parallel execution as processors will be
blocked even if they do not really need the value.

!hpf$ task_region

!hpf$ on home (A)

call TASK1 (A)

B = A ! might also block processors of TASK3

!hpf$ on home (B)

call TASK2 (B)

C = B ! might also block processors of TASK1

!hpf$ on home (C)

call TASK3 (C)

!hpf$ end task_region

18

Generally, task interaction should be visible in the task region for e�ciency and portability

reasons. In certain cases, this is not possible but then the HPF Library can be used. Both

kinds of interactions can be combined without any problems.

8 Local Routines

HPF provides the EXTRINSIC mechanism to couple the data parallel programming model with

other models. This section outlines that the local model goes conform with the task model and

the HPF task library can be used in a similar way.

8.1 Tasks in LOCAL Subprograms

HPF allows the use of local routines. A local routine allows to write single-processor code that

works only on data that is mapped to a given physical processor. In this sense, a local routine

contains only local computations. Within the local subroutine, the active processor subset is

restricted to a single processor.

interface

extrinsic (HPF_LOCAL) subroutine SUB (A)

real, dimension (:) :: A

end subroutine SUB

end interface

real, dimension (N) :: A

...

call SUB (A)

The processors executing the local subprogram can be viewed as single processor tasks where

task interaction is useful in the same way as for data parallel tasks.

!hpf$ independent task_region

!hpf$ on (P(1))

call sub (A(lb(1):ub(1))

!hpf$ on (P(2))

call sub (A(lb(2):ub(2))

...

!hpf$ on (P(k))

call sub (A(lb(k):ub(k))

!hpf$ end task_region

Tasking for local subroutines is supported in the same way.

� The subroutine TASK SIZE returns the number of processors executing the same local

subroutine. This number corresponds to the value of the global HPF LIBRARY function

ACTIVE NUM PROCS as if it has been called before the call of the local routine (within the

local routine the number of active processors is 1). The subroutine TASK RANK returns the

corresponding id 1 � id � P where P is the value return by TASK SIZE.

� Any task interaction provided for data parallel tasks is available in the same way for the

tasks (processors) executing a local subprogram. So the routines in the local model have

the same syntax as the corresponding routines for communication between data paralllel

tasks. As every task consists of exactly one processor, no descriptor exchange is necessary.

19

8.2 Local Routines in HPF Tasks

When a local routine is called within a code section where not all processors are active, some

attention must be paid to the following topics:

� The HPF local routine library identi�es each processor by an integer in the range 0 to n�1
where n is the value returned by the global HPF LIBRARY function NUMBER OF PROCESSORS.

More convenient would be the value returned by the global HPF LIBRARY function ACTIVE NUM PROCS.

� As no longer all processors might be involved, message passing is restricted. If e.g. MPI

is used, a special routine should provide the last HPF context for the global HPF task.

� The other routines of the HPF LOCAL LIBRARY should work �ne. The term GLOBAL refers

to the last global HPF task context.

9 Example of Nested Task Parallelism: FFT

The Fast Fourier Transformation (FFT) plays a key role in many areas of computational science

and engineering. The Fourier transformations input is an N -vector of complex numbers repre-

senting some discretized function and it computes the coe�cients of the constituent function

yields that provide a great deal of information about the function. Cooley and Tukey presented

in 1965 [8] an e�cient algorithm that has been the basis for nearly all optimizations on all kind

of computer architectures. The structure of the algorithm is similar to other tree structured

algorithms loke Barnes-Hut for N-body problems [1].

9.1 The FFT Algorithm

Let a(x) be a given polynom:

a(x) =

N�1X

i=0

aix
i

The Fourier transformation computes the values of this polynom for the complex roots of

unity ! = e2�i=N , where i =
p
�1. We are looking for the values of the roots:

Aj := a(!j) 0 � j < m m = N = 2k

Viewed merely as a linear system, O(N2) time is needed to compute the result coe�cients

Ai. The well-known Fast Fourier Transform technique requires only O(NlogN) time, using the

following identity:

!j+n = �!j N = 2n

Now the polynom can be split by and odd/even transformation into two polynoms b(y) and

c(y):

a(x) = b(y) + xc(y) y = x2 b(y) =

n�1X

i=0

a2iy
i c(y) =

n�1X

i=0

a2i+1y
i

20

The problem is splitted into two problems that have half the size. The solution of b and c

can be combined to a solution of the original problem:

Aj = a(wj) = b(w2j) + wjc(w2j)

Aj+n = a(wj+n) = b(w2j)� wjc(w2j)

This recursion continued up to problems of size 1 result in an algorithm that has the com-

plexity O(NlogN).

9.2 The Recursive FFT Program

Taking the idea of the recursive splitting results directly in the following data and task parallel

HPF program:

recursive subroutine FFT (A, W, N, N2)

integer, intent (in) :: N, N2

complex, dimension (0:N2-1), intent(in) :: W

complex, dimension (0:N-1), intent(inout) :: A

!hpf$ inherit :: A

!hpf$ range (block()) :: A

complex, dimension (0:N2-1) :: B, C ! temporary arrays

!hpf$ align B(I) with A(I)

!hpf$ align C(I) with A(I+N2)

if (N == 1) return ! we are done now

B (0:N2-1) = A(0:N-1:2)

C (0:N2-1) = A(1:N-1:2)

if (N2 > 1) then

!hpf$ on home (B)

call FFT (B, W(0:N2-1:2), N2, N2/2)

!hpf$ on home (C)

call FFT (C, W(0:N2-1:2), N2, N2/2)

end if

A(0:N2-1) = B(0:N2-1) + C(0:N2-1) * W(0:N2-1)

A(N2:N-1) = B(0:N2-1) - C(0:N2-1) * W(0:N2-1)

end subroutine FFT

� Active processors branch into two di�erent subroutine calls of the recursive FFT. The

compiler should not need the RESIDENT clause to identify the locality of the arguments.

� Most e�cient only when the number of processors is a power of two. Otherwise one

processor might participate in both calls.

� High reality on compiler that two disjoint processor subgroups are built up (not even done

by ADAPTOR yet).

� ADAPTOR does not support alignment with a value not known at compile time.

21

� Ine�cient due to many subroutine calls, also for the smaller arrays on one processor.

� Passing of the array section of W with the roots can result in copy-in and copy-out.

9.3 Presorting

The �rst part of the FFT is the reordering of the elements of the input array A.

recursive subroutine PRESORT (A, N, K)

integer, intent (in) :: N, K

complex, dimension (0:N-1), intent(inout) :: A

complex, dimension (:), allocatable :: H

if (N > 2) then

N2 = N/2

allocate (H(0:N-1))

H = A

A(0:N2-1) = A(0:N-1:2)

A(N2:N-1) = H(1:N-1:2)

deallocate (H)

call PRESORT (A(0:N2-1), N2, K-1)

call PRESORT (A(N2:N-1), N2, K-1)

end if

end subroutine PRESORT

Figure 5 shows the corresponding communication pattern for this reordering.

1514131211100 1 2 3 4 5 6 7 8 9

0 2 4 6 8 10 12 14 15131197531

0 1144 8 12 2 6 10 5 9 13 151173

0 11412 2 13 1538 4 10 6 9 5 11 7

Figure 5: FFT presorting by bit reversing.

The presorting can be implemented more e�ciently if the �nal permutation (bit reversion)

is computed before the �nal data movement is done.

complex, dimension (0:N-1) :: A, H

integer, dimension (0:N-1) :: INDEX

...

! part 1 : compute the bit reversion table

INDEX(0)=0

STRIDE=1

OFFSET=N2

do L = 1, K

do I = 0, STRIDE - 1

INDEX(I+STRIDE)=INDEX(I)+OFFSET

22

end do

OFFSET=OFFSET/2

STRIDE=STRIDE*2

end do

...

! part 2: do the rerodering

H = A(INDEX)

A = H

The following algorithm computes the index array completely independently for all values.

N2 = N/2

!hpf$ independent, new (HI, KN, IN, HL)

do I = 0, N-1

HI = I; KN = N2; IN = 0

do L = 0, K-1

HL = iand (HI,1) ! HI mod 2, is bit L of I

if (HL > 0) IN = ior (IN,KN) ! IN = IN + HL * KN

HI = ishft (HI,-1) ! HI / 2

KN = ishft (KN,-1) ! KN / 2

end do

INDEX (I) = IN

end do

K = 16 K = 17 K = 18 K = 19

serial+index 0.020 0.023 0.055 0.161

serial 0.008 0.013 0.035 0.125

data, serial+index 0.041 0.084 0.223 0.589

data, serial 0.008 0.018 0.074 0.273

data, P=1 0.091 0.189 0.452 1.701

data, reuse, P=1 0.015 0.039 0.116 0.358

task, P=1 0.011 0.023 0.088 0.288

data, P=2 0.046 0.095 0.211 0.480

data, reuse, P=2 0.009 0.022 0.049 0.122

task, P=2 0.014 0.042 0.072 0.212

data, P=4 0.026 0.049 0.126 0.252

data, reuse, P=4 0.007 0.012 0.026 0.065

task, P=4 0.015 0.030 0.070 0.172

Table 1: Presorting on SGI Origin

9.4 Transformation

recursive subroutine TRANSFORM (A, W, N, N2, K)

integer, intent (in) :: N, N2

complex, dimension (0:N2-1), intent(in) :: W

complex, dimension (0:N-1), intent(inout) :: A

23

!hpf$ distribute A (block) onto *

complex, dimension (:) :: H ! temporary array

!hpf$ align H with A

if (N == 1) return ! we are done now

if (N2 > 1) then

call TRANSFORM (A(0:N2-1), W(0:N2-1:2), N2, N2/2, K-1)

call TRANSFORM (A(N2:N-1), W(0:N2-1:2), N2, N2/2, K-1)

end if

allocate (H(0:N-1))

H(0:N2-1) = A(N2:N-1)

H(N2:N-1) = A(0:N2-1)

A(0:N2-1) = A(0:N2-1) + H(0:N2-1) * W(0:N2-1)

A(N2:N-1) = H(N2:N-1) - A(N2:N-1) * W(0:N2-1)

deallocate (H)

end subroutine TRANSFORM

K = 16 K = 17 K = 18 K = 19

serial 0.078 0.173 0.392 0.860

data, P=1 0.181 0.411 1.097 3.112

task, P=1 0.078 0.172 0.380 0.864

data, P=2 0.127 0.305 0.633 1.766

task, P=2 0.049 0.106 0.433 0.954

data, P=4 0.081 0.179 0.371 1.075

task, P=4 0.028 0.064 0.141 0.332

Table 2: Transformation on SGI Origin

9.5 Results

K = 14 K = 15 K = 16 K = 17 K = 18 K = 19

Cooley, xlf 0.040 0.080 0.170 0.370 0.800 1.790

Cooley, hpf 0.036 0.076 0.161 0.350 0.744 1.694

Cooley1, hpf 0.043 0.113 0.244 0.525 1.140 2.521

data, xlf 0.160 0.400 0.840 1.780 3.790 8.140

data, hpf 0.125 0.376 0.695 1.489 3.241 6.969

rec, xlf 0.100 0.220 0.470 1.010 2.240 4.950

rec, hpf error error error error error error

Table 3: Serial results for one-dimensional FFT on IBM SP2

24

K = 14 K = 15 K = 16 K = 17 K = 18 K = 19

serial 0.125 0.376 0.695 1.489 3.241 6.969

P=1 0.413 0.930 1.981 4.235 10.828 22.551

P=2 0.268 0.595 1.241 2.634 5.491 13.368

P=4 0.160 0.322 0.679 1.391 2.901 6.289

P=8 0.108 0.197 0.375 0.771 1.541 3.525

P=16 0.116 0.157 0.245 0.444 0.585 1.686

Table 4: Data parallel results for one-dimensional FFT on IBM SP2.

K = 14 K = 15 K = 16 K = 17 K = 18 K = 19

serial 0.043 0.113 0.244 0.525 1.140 2.521

P=1 0.044 0.114 0.245 0.524 1.135 2.526

Table 5: Task parallel results for one-dimensional FFT on IBM SP2.

K = 16 K = 17 K = 18 K = 19 K = 20 K = 21

bserial 0.151 0.326 0.698 1.506 3.270 6.950

P=1 0.550 1.177 2.502 5.399 12.962 42.537

P=2 0.356 0.731 1.534 3.363 7.751 18.007

P=4 0.230 0.464 0.938 1.955 4.496 10.519

P=8 0.153 0.295 0.569 1.157 2.546 6.021

P=16 0.101 0.195 0.362 0.671 1.409 3.213

P=32 0.092 0.140 0.252 0.444 0.836 1.742

P=1 0.163 0.348 0.765 1.712 3.666 7.972

P=2 0.145 0.293 0.601 1.260 2.680 5.692

P=4 0.124 0.235 0.443 0.866 1.794 3.737

P=8 0.096 0.181 0.325 0.643 1.212 2.447

P=16 0.075 0.141 0.267 0.464 0.878 1.739

P=32 0.071 0.121 0.222 0.407 0.705 1.299

P=1 0.173 0.369 0.784 1.784 4.079 8.000

P=2 0.133 0.267 0.554 1.144 2.483 5.210

P=4 0.097 0.193 0.384 0.762 1.545 3.278

P=8 0.064 0.122 0.242 0.493 0.965 1.975

P=16 0.045 0.082 0.143 0.295 0.564 1.153

P=32 0.035 0.053 0.129 0.184 0.337 0.642

Table 6: Results for one-dimensional FFT on IBM SP2

25

10 Example of HPF Task Pipelining: 2D FFT

The 2D FFT takes an n1 � n2 input array A, performs n2 independent n1-point FFTs on

the columns of A, followed by n1 independent n2-point 1D FFTs on the rows of A. The row-

wise FFTs are replaced by a transpose followed by a set of column-wise FFTS and another

transpose. Figure 6 shows the task graph for the 2D FFT. This example has been adapted

from the Carnegie Mellon task parallel program suite [18].

Input col
FFTs

trans
col

FFTs trans Output

Figure 6: 2D FFT task graph for one input array.

10.1 The Data Parallel Version

real, dimension (2,N, N) :: A, B ! input/intermediate images

!hpf$ distribute (*,*,block) :: A, B

do K=1,ITERS

call DGEN(A,N) ! get the input image

call CFFTS(A,BRT,W,N,LOGN,N/2) ! FFT's on each column

call TPOSE(A,B,N) ! transpose the image

call CFFTS(B,BRT,W,N,LOGN,N/2) ! FFT's on each column again

call TPOSE(B,A,N) ! final transpose

call CHKMAT(A,N) ! print/check the results

enddo

10.2 The HPF Task Version

The HPF task version needs four arrays, one for every task. The mapping of these arrays to

processor subsets speci�es the mapping of the tasks to processor subsets

real, dimension (2,N, N) :: A, B, A1, A2

!hpf$ processors P(1:NP)

!hpf$ distribute (*,*,block) onto P(P1L:P1U):: A1

!hpf$ distribute (*,*,block) onto P(P2L:P2U):: A

!hpf$ distribute (*,*,block) onto P(P3L:P3U):: B

!hpf$ distribute (*,*,block) onto P(P4L:P4U):: A2

!hpf$ task_region

26

!hpf$ on home (A), resident

call DGEN(A1,N) ! get the input image

A = A1

!hpf$ on home (A1), resident

call CFFTS(A,BRT,W,N,LOGN,N/2) ! FFT's on each column

call TPOSE(A,B,N) ! transpose the image

!hpf$ on home (B), resident

call CFFTS(B,BRT,W,N,LOGN,N/2) ! FFT's on each column again

call TPOSE(B,A2,N) ! final transpose

!hpf$ on home (A2), resident

call CHKMAT(A2,N) ! print/check the results

!hpf$ end task_region

The transpose routine will be entered by all processors, but processors that do not participate

will leave the routine immediately.

subroutine TPOSE (A, B, N)

integer, intent(in) :: N

real, dimension (2,N,N) :: A, B

!hpf$ distribute (*,*,BLOCK) onto * :: A, B

integer :: I, J, K

forall (K=1:N,J=1:N,I=1:2) B(I,J,K) = A(I,K,J)

end subroutine TPOSE

Attention: The ONTO * clause is very important to tell the compiler that the subroutine

must handle actual arguments that are mapped onto any processor subset. This guarantees

that there will be never any redistribution of the arguments.

10.3 Results

serial NP = 1 NP = 2 NP = 4 NP = 8

only data 253 296 173 101 56

data+task 286 308 164 95 52

Table 7: Results for two-dimensional FFT on IBM SP2

11 Example of Scheduled HPF Tasks

The example in this section shows how to implement a pipeline of data parallel tasks. The

pipeline has three stages. While the �rst and the last stage are exactly one task, there are a

27

certain number of worker tasks for the second stage. The load is scheduled to available tasks

on this second stage.

11.1 Task Creation

!hpf$ independent task_region

!hpf$ on (PROCS(1)), resident ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(2:PA+1)), resident ! will be task 2

call STAGE2 ()

!hpf$ on (PROCS(PA+2:P-1)), resident ! will be task 3

call STAGE2 ()

!hpf$ on (PROCS(P)), resident ! will be task 4

call STAGE3 (ERRORS(1))

!hpf$ end task_region

Figure 7 shows the principle of message passing between the di�erent tasks.

subroutine STAGE2()

integer TASK_ID, STREAM_ID

real, dimension (N,N) :: A

!hpf$ distribute (block, block) :: A

call hpf_send (A, 4)

call hpf_send (STREAM_ID, 4)

call hpf_send (TASK_ID, 4)

call hpf_recv (A, 1)

call hpf_recv (STREAM_ID, 1)

call hpf_send (TASK_ID, 1)

call hpf_task_rank (TASK_ID)

subroutine STAGE2()

integer TASK_ID, STREAM_ID

real, dimension (N,N) :: A

!hpf$ distribute (block, block) :: A

call hpf_send (A, 4)

call hpf_send (STREAM_ID, 4)

call hpf_send (TASK_ID, 4)

call hpf_recv (A, 1)

call hpf_recv (STREAM_ID, 1)

call hpf_send (TASK_ID, 1)

call hpf_task_rank (TASK_ID)

Task 1

Task 2

Task 3

Task 4

Stage 1 Stage 2 Stage 3

integer TASK_ID, STREAM_ID

subroutine STAGE3()

!hpf$ distribute (*,block) :: A

real, dimension (N,N) :: A

call hpf_recv (data=TASK_ID)

call hpf_recv (STREAM_ID, TASK_ID)

call hpf_recv (A, TASK_ID)
call hpf_send (A, TASK_ID)

call hpf_send (STREAM_ID, TASK_ID)

call hpf_recv (data=TASK_ID)

subroutine STAGE1()

integer TASK_ID, STREAM_ID

real, dimension (N,N) :: A

!hpf$ distribute (block, *) :: A

Figure 7: Message passing for data parallel tasks.

11.2 Stage 1

The subroutine STAGE1 implements the data parallel task for the �rst stage in the pipeline. It

initializes the data and sends it to the next available worker task on stage 2.

28

subroutine STAGE1 ()

use HPF_TASK_LIBRARY

implicit none

integer, parameter :: N = 100

integer, parameter :: ITERS = 9

integer :: WORKERS ! number of tasks for STAGE2

integer :: STREAM_ID

integer :: TASK_ID

integer :: I, J

integer, dimension (N,N) :: A

!hpf$ distribute (block,*) :: A

call HPF_TASK_INIT ()

call HPF_TASK_SIZE (WORKERS)

WORKERS = WORKERS - 2 ! first and last task are not workers

STREAM_ID = 1

do while (STREAM_ID <= ITERS)

forall (I=1:N,J=1:N) A(J,I) = STREAM_ID ! init array A

call HPF_RECV (TASK_ID) ! wait for ready task of STAGE 2

call HPF_SEND (data=STREAM_ID, dest=TASK_ID) ! send stream id

call HPF_SEND (data=A, dest=TASK_ID) ! send data

STREAM_ID = STREAM_ID + 1

end do

do I = 1, WORKERS ! send end of stream to all working tasks

call HPF_RECV (data=TASK_ID) ! receive any task id

call HPF_SEND (0, TASK_ID) ! send task end of stream signal

end do

call HPF_TASK_EXIT ()

end subroutine STAGE1

11.3 Stage 2: Working Tasks

The subroutine STAGE2 implements the data parallel task for the second stage in the pipeline.

There might be more than one incarnation of this task. Every incarnation will be a worker

task. This worker task sends a ready signal to the �rst stage1 when it is free for doing work.

It receives the data, works on it and sends it at the end to the �nal stage 3 in the pipeline.

subroutine STAGE2 ()

use HPF_TASK_LIBRARY

implicit none

29

integer, parameter :: N = 100

integer :: TASK_ID

integer :: SIZE

integer :: STREAM_ID

integer, dimension (N,N) :: A

!hpf$ distribute (block,*) :: A

call HPF_TASK_SIZE (size=SIZE) ! get number of tasks

call HPF_TASK_RANK (rank=TASK_ID) ! get my TASK_ID

call HPF_SEND (TASK_ID, dest=1) ! tell task 1 that I am ready

call HPF_RECV (STREAM_ID, source=1) ! wait for a stream id

do while (STREAM_ID <> 0) ! stop for stream id 0

call HPF_RECV (A, source = 1) ! receive the data

A = A + 1 ! data parallel work for A

call HPF_SEND (TASK_ID, SIZE) ! tell final task that I am ready

call HPF_SEND (STREAM_ID, SIZE) ! send the stream id

call HPF_SEND (data=A, SIZE) ! send the data

call HPF_SEND (TASK_ID, dest=1) ! tell task 1 that I am ready

call HPF_RECV (STREAM_ID, source=1) ! wait for the next stream id

end do while

call HPF_SEND (TASK_ID, SIZE) ! tell final task that I am finished

call HPF_SEND (0, SIZE) ! send the end of stream signal

end subroutine STAGE2

11.4 Stage 3: Final Task

The subroutine STAGE3 implements the �nal stage in the pipeline. It collects the data arrays

from the worker tasks until all worker tasks have �nished.

subroutine STAGE3 ()

use HPF_TASK_LIBRARY

implicit none

integer, parameter :: N = 100

integer, parameter :: WORKERS = 2

integer :: STOPS ! counts end of workers

integer :: TASK_ID ! identification for communication task

integer :: STREAM_ID ! identification of data stream

integer, dimension (N, N) :: A

!hpf$ distribute (*, block) :: A

STOPS = 0

ERRORS = 0

30

do while (STOPS <> WORKERS) ! there are still unfinished workers

call HPF_RECV (data=TASK_ID) ! wait for ready task

call HPF_RECV (source=TASK_ID, data=STREAM_ID) ! receive the stream id

if (STREAM_ID == 0) then

STOPS = STOPS +1

else

call HPF_RECV (source=TASK_ID, data=A)

call output (A) ! final work on A

end if

end do while

end subroutine STAGE3

12 Implementation of Task Parallelism within ADAPTOR

12.1 Support of Processor Subsets

The support of processor subsets was one of the �rst issues when starting with the implemen-

tation of task parallelism.

12.2 Support of the ON Directive

The ON directive was already available for a long time, but with certain restrictions. With the

support of processor subsets, now also processors can be speci�ed as the home of computations.

12.3 Compiler Support

Beside the syntactical checks for a TASK REGION, the compiler has now also to generate code

that de�nes task identi�ers for all lexical tasks.

!hpf$ independent task_region

!hpf$ on (PROCS(1:4)) ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(5:10)) ! will be task 2

call STAGE2 ()

!hpf$ on (PROCS(11:16)) ! will be task 3

call STAGE2 ()

!hpf$ on (PROCS(17:20)) ! will be task 4

call STAGE3 ()

!hpf$ end task_region

The de�nition of the task context must be executed by all processors. The tasks itself are

executed on the corresponding processor subsets that become the active processors.

call DALIB_start_tasking ()

call DALIB_subtop_create (PROCS_1_TOPID,PROCS_DSP,1,1,4,1)

call DALIB_set_task_procs (PROCS_1_TOPID)

call DALIB_subtop_create (PROCS_2_TOPID,PROCS_DSP,1,5,10,1)

31

call DALIB_set_task_procs (PROCS_2_TOPID)

call DALIB_subtop_create (PROCS_3_TOPID,PROCS_DSP,1,11,16,1)

call DALIB_set_task_procs (PROCS_3_TOPID)

call DALIB_subtop_create (PROCS_4_TOPID,PROCS_DSP,1,17,20,1)

call DALIB_set_task_procs (PROCS_4_TOPID)

if (DALIB_is_in_procs(PROCS_1_TOPID)) then

call DALIB_push_procs_context (PROCS_1_TOPID)

call STAGE1 ()

call DALIB_pop_procs_context ()

end if

if (DALIB_is_in_procs(PROCS_2_TOPID)) then

call DALIB_push_procs_context (PROCS_2_TOPID)

call STAGE2 ()

call DALIB_pop_procs_context ()

end if

if (DALIB_is_in_procs(PROCS_3_TOPID)) then

call DALIB_push_procs_context (PROCS_3_TOPID)

call STAGE2 ()

call DALIB_pop_procs_context ()

end if

if (DALIB_is_in_procs(PROCS_4_TOPID)) then

call DALIB_push_procs_context (PROCS_4_TOPID)

call STAGE3 ()

call DALIB_pop_procs_context ()

end if

call DALIB_stop_tasking ()

Furthermore, the compiler will check the correct typing of the routines of the HPF TASK LIBRARY.

It translates them to corresponding calls of the DALIB runtime system.

call HPF_RECV (TASK_ID) ! receive any taskid from other task

call HPF_SEND (data=STREAM_ID, dest=TASK_ID)

call HPF_SEND (data=A, dest=TASK_ID)

In case of a scalar argument, the compiler generates an additional parameter for the number

of bytes. In case of an array argument, it passes the array descriptor.

call DALIB_HPF_RECV_SCALAR (TASK_ID,4,DALIB_0)

call DALIB_HPF_SEND_SCALAR (STREAM_ID,4,TASK_ID)

call DALIB_HPF_SEND_ARRAY (A_DSP,TASK_ID)

12.4 Runtime Support

� Management of a task context, allowing nested task parallelism.

� Implementation of the routines of the HPF TASK LIBRARY.

The highest functionality is given by the possibility of sending and receiving distributed

arrays or sections of distributed arrays between data parallel tasks. Most of this functionality

was already available in the DALIB runtime system. Only the exchange of descriptors for

arrays, sections and mappings had to be added as a new functionality.

In case of task interaction with global arrays, the descriptors have not to be exchanged

between the tasks as every task has already the necessary information.

32

12.5 Outstanding ADAPTOR Problems

� In the following example the actual argument will be redistributed. Though there is no
communication involved, it requires copy-in and copy-out data transfer.

real, dimension (N) :: A

!hpf$ processors P(1:NP)

!hpf$ distribute A(block) onto P

...

!hpf$ on (P(1:NP2), resident

call SUB (A(0:N2-1))

Runtime support is required as the compiler is not able to recognize that the array section

as an actual argument has still a block distribution.

� No mapping of scalar variables to processor subsets.

� Sending and receiving of replicated arrays causes serious problems as compiler assumes

own copies when calling the corresponding assignment problem

� TAG argument for send and receive not available

� ORDER argument not supported yet, problem is that receiving process has also to know

the permutation

� No DO loop within an independent task region to create a variable number of tasks.

13 Conclusions and Future Work

The HPF task model allows the coupling of data parallel tasks in a simple way as long as the

interaction between the tasks is completely visible at the coordination level in the TASK REGION.

Coupling of data parallel subprograms is possible via the argument lists, there is no interaction

during the execution of the subprogram. This task model is relatively easy to implement in an

HPF environment if the ON directive and related clauses are supported as well as the mapping

of data to processor subsets.

Moving task interaction within the tasks is rather straightforward. An assignment of data

from one task to data of another task becomes a send in the �rst and a receive in the other

task. By this way, task parallelism becomes available for separately compiled HPF programs.

Many well established parallel programming styles like farming can be used in a data parallel

framework if the receiving of arbitrary tasks is supported.

The use of communication via send and receive in a language like HPF seems to destroy the

high level intention. But data parallel computations still do not need any message passing, it is

restricted only to the interaction of running data parallel tasks where it is indeed quite natural.

The high level nature of HPF is taken into account by providing a high level HPF binding of

the communication routines (no arguments for size, datatype, context, etc.).

We considered other solutions than message passing, but due to the similarity with MPI it

seems to be very convenient to follow this library approach. It also combines the advantages of

the HPF task model based on processor subsets and a sequential semantic with the advantages

of the great exibility when using message passing. The concept of the task library goes

33

conform with the other extrinsic models of HPF and therefore allows the combination with

other programming models, e.g. MPI.

The ADAPTOR HPF compilation systems provides task parallelism as speci�ed in HPF

and the task library as described in this paper. This library or a more standardized library

with a similar and improved functionality could be provided by any HPF compiler vendor as

it can be implemented rather easily by using the HPF runtime system that has to support

redistributions in any case. Experiments so far have shown that the use of task parallelism in

HPF is very user-friendly, no more limited, and, most important, e�cient enough to be a very

attractive alternative.

Acknowledgements

Most thanks are due to Salvatore Orlando (Universita di Venezia) and Ra�aele Perego (CNUCE,

Italy) for many valuable discussions and a lot of technical hints. I am indebted to Mike Delves

(NA Software, Liverpool) for the great idea to make the task library also available in the local

HPF model.

References

[1] J. Barnes and P. Hut. A hierarchical O(NlogN) force calculation algorithm. Nature 4, 324:446{449,
1986.

[2] E. Brakkee, K. Wolf, D.-P. Ho, and A. Sch�uller. The COupled COmmunications LIBrary. In
University of Westminster, editor, Proceedings of the 5th Euromicro Workshop on Parallel and

Distributed Computing, London, UK, pages 155{162, London, UK, January 1997. IEEE Computer
Society Press.

[3] T. Brandes. ADAPTOR Programmer's Guide (Version 6.0). Technical documentation, GMD,
June 1998. Available via anonymous ftp from ftp.gmd.de as gmd/adaptor/docs/pguide.ps.

[4] T. Brandes and R. H�over-Klier. ADAPTOR Installation Guide (Version 6.0). Techni-
cal documentation, GMD, June 1998. Available via anonymous ftp from ftp.gmd.de as
gmd/adaptor/docs/iguide.ps.

[5] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF Programs. In K.M.
Decker and R.M. Rehmann, editors, Programming Environments for Massively Parallel Distributed

Systems, pages 91{96. Birkh�auser Verlag, April 1994.

[6] B. Chapman, M. Haines, P. Mehrotra, H. Zima, and J. Van Rosendale. Opus: A Coordination
Language for Multidisciplinary Applications. Scienti�c Programming, 6(4):345{361, 1997.

[7] B. M. Chapman, P. Mehrotra, J. Van Rosendale, and H. P. Zima. A software architecture of mul-
tidisciplinary applications: Integrating task and data parallelism. In Proceedings of CONPAR94-

VAPP VI Third International Conference on Vector and Parallel Processing, volume 854 of Lecture
Notes in Computer Science, pages 664{676. Springer Verlag, September 1994.

[8] J. W. Cooley and J. W. Tukey. An Algorithm for the machine calculation of complex Fourier
series. Mathematical Computing, 19:297{301, 1965.

[9] P. Dinda, T. Gross, D. O'Hallaron, E. Segall, E. Stichnoth, J. Subhlok, J. Webb, and B. Yang.
The CMU Task Parallel Program Suite. Technical Report CMU-CS-94-131, School of Computer
Science, Carnegie Mellon University, March 1994.

[10] I. Foster, D. Kohr, Krishnaiyer R., and A. Choudhary. Double Standards: Bringing Task Paral-
lelism to HPF via the Message Passing Interface. In PA Pittsburgh, editor, Supercomputing '96,
November 1996.

34

[11] W. Groop, E. Lusk, and A. Skjellum. Using MPI : Portable Parallel Programming with the

Message-Passing Interface. Scienti�c and Engineering Computation Series. The MIT Press, Cam-
bridge, MA, 1994.

[12] T. Gross, D. O'Hallaron, and J. Subhlok. Task Parallelism in a High Performance Fortran Frame-
work. IEEE Parallel and Distributed Technology, 2(2):16{26, 1994.

[13] High Performance Fortran Forum. High Performance Fortran Language Speci�cation. Version 1.1,
Department of Computer Science, Rice University, November 1994.

[14] High Performance Fortran Forum. High Performance Fortran Language Speci�cation. Version 2.0,
Department of Computer Science, Rice University, January 1997.

[15] S. Orlando and R. Perego. COLTHPF , a Coordination Layer for HPF Tasks. Technical Report Se-
ries on Computer Science CS-98-4, Universita ca' Foscari di Venezia, March 1998. Paper submitted
to Concurrency: Practice and Experience.

[16] S. Ramaswamy and P. Banerjee. Automatic Generation of E�cient Array Redistribution Routines
for Distributed Memory Multicomputers. In Proceedings of the Fifth Symposium on the Frontiers

of Massively Parallel Computations (FRONTIERS'95), pages 342{394, February 1995.

[17] S. Ramaswamy, S. Spatnekar, and P. Banerjee. A Framework for Exploiting Task and Data
Parallelism on Distributed Memory Multicomputers. IEEE Transaction on Parallel and Distributed

Systems, 8(11):1098{1116, November 1997.

[18] J. M. Stichnoth, D. O'Hallaron, and T. R. Gross. Generating Communication for Array State-
ments: Design, Implementation, and Evaluation. Journal of Parallel and Distributed Computing,
21:150{159, April 1994.

[19] J. Subhlok and B. Yang. A New Model for Integrated Nested Task and Data Parallel Programming.
In PPOPP 97, 1997.

35

