
ADAPTOR 6.1 Release Notes

Thomas Brandes, Resi H�over-Klier
Institute for Algorithms and Scienti�c Computing (SCAI)

German National Research Center for Information Technology (GMD)
Schlo� Birlinghoven, D-53754 St. Augustin, Germany

Tel.: +49-2241-142492, Fax: +49-2241-142181
e-mail: brandes@gmd.de

Abstract

ADAPTOR (Automatic DAta Parallelism TranslatOR) is a public domain High
Performance Fortran (HPF) compilation system developed at the SCAI institute
(GMD) during the last years. The tool transforms data parallel programs written
in Fortran with array extensions, parallel loops, and layout directives into programs
with explicit message passing.

These release notes describe the latest achievements incorporated within the
new ADAPTOR version 6.1.

1 What is new in ADAPTOR 6.1

� ADAPTOR 6.1 does not include the support of any new language features but

the existing ones are now more general, especially for HPF programs that use

derived data types and pointers.

� The support of task parallelism has improved and its use is safer than in the

previous version.

� ADAPTOR now provides automatic loop parallelization and identi�es automat-

ically scalar NEW and RESIDENT variables (see section 4).

� ADAPTOR now includes more appropriate, helpful error and warning messages

to make it easier for users to debug programs and to tune them.

� ADAPTOR is also available for the NEC Cenju-4, a version of the DALIB is now

also available for EPX (communication API of Embedded Parix).

With the new version of ADAPTOR only a new users guide is provided [BHK98b].

The installation guide [BHK98a] and the programmers guide [Bra98a] have not been

updated.

1



2 New Supported Language Features of HPF

The latest version ADAPTOR 6.1 does not support any more language features than

the previous one.

2.1 Derived Data Types

It is now rather safe to use distribution directives for components of derived data types.

Also components with the POINTER attribute can have mapping directives, but should

be used like arrays with the ALLOCATABLE attribute.

integer, parameter :: N = 10

type GRID

real, dimension (N,N) :: A

real, dimension (:,:), pointer :: B

!hpf$ distribute (*,block) :: A, B

end type

type (GRID), dimension(20) :: SEQUENCE

More critical is the mapping of arrays of derived data types when the components

contain arrays:

type GRID

real, dimension (N,N) :: A

real, dimension (:,:), pointer :: B

end type

type (GRID), dimension(20) :: SEQUENCE

!hpf$ distribute (block) :: SEQUENCE ! attention

The whole ADAPTOR translation is based of the idea that every processor contains

a descriptor of every array and knows about the sizes and the mapping of these arrays.

If now the array SEQUENCE is mapped, the array descriptors for the components A

and B will only exist on one processor. Not every processor has an array descriptor

of all existing arrays. So the other processors will not know about the sizes of the

components when they are not mapped to this processor. This might cause problems

in certain situations that are not �xed completely yet.

2.2 Task Parallelism

The features for HPF task parallelism have been improved. This includes especially

the functionality of the HPF task library.

It is now also possible to couple di�erent HPF programs. Distributed arrays can

be exchanged between di�erent tasks just like serial data in usual message passing

programs.

2



Furthermore, ADAPTOR supports irregular processor subsets. This results in more

exibility when using task parallelism.

!hpf$ processors P (6)

integer, dimension (4) :: IND = (/ 1, 3, 4, 6 /)

real, dimension (N) :: A1, A2

!hpf$ distribute A1 (block) onto P

!hpf$ distribute A2 (block) onto P(IND)

...

!hpf$ on (P(IND))

call TASK (A2, N)

A more detailed description of the support for HPF task parallelism can be found

in [Bra98b].

2.3 The RANGE Directive

The RANGE directive itself was already avaialable in the previous version of ADAPTOR.

It could be used to restrict the possible mappings of dummy arrays whose mapping was

inherited.

subroutine sub (A, N)

integer, intent (in) :: N

real, dimension (N,N) :: A

!hpf$ inherit A

!hpf$ range (block(),block()) :: A

The RANGE directive can now also be used to specify the possible mappings of arrays

that have the DYNAMIC attribute. This becomes very important for global arrays in

modules. Subprograms using this module have now more information about possible

mappings of the arrays within this module.

module DATA

integer, parameter :: N = 100

real, dimension (N,N) :: A

!hpf$ dynamic :: A

!hpf$ range (block(),block()) :: A

!hpf$ distribute (*,block) :: A ! initial distribution

...

Every subprogram using the module DATA has now more information about possible

mappings of the array A.

3



2.4 The NODESCRIPTOR Directive

ADAPTOR will create for every array an array descriptor at runtime. This includes

also small �xed sized arrays. In the following example, there will be an array descriptor

for A and B for every component of SEQUENCE.

type GRID

real, dimension (3,3) :: A, B

integer :: N1, N2

end type

type (GRID), dimension(20) :: SEQUENCE

In other words, there will be 20 array descriptors for A and 20 for B at runtime.

ADAPTOR now provides the NODESCRIPTOR directive to avoid this overhead.

type GRID

real, dimension (3,3) :: A, B

!adp$ nodescriptor :: A, B

integer :: N1, N2

end type

type (GRID), dimension(20) :: SEQUENCE

In the following situations, the array descriptor must exist and the NODESCRIPTOR

directive would be invalid:

� Every mapped array and every array with the DYNAMIC attribute of HPF must

have a descriptor at runtime.

� Every dynamic array (allocatable array or automatic array) must have a descrip-

tor.

� Arrays with the POINTER, TRACE, SHARED or SHADOW attribute must have a de-

scriptor.

� If a section of an array is passed to a subprogram, the array must have a descriptor.

� An array used in certain array operations (e.g. CSHIFT) must have a descriptor.

The absence of an array descriptor can also improve the performance when calling

a pure routine working on small arrays. It avoids the creation of descriptors for every

call and the matching of actual and dummy descriptors.

real, dimension F1(6,N)

real, dimension X1(3,N)

!hpf$ distribute F1 (*,block)

4



!hpf$ align X1 (J,I) with F1 (*,I)

real F(6), X(3)

...

!hpf$ independent, new (F, X)

do I = 1, N

F = F1(:,I)

call CALC (X, F)

X1(:,I) = X

end do

...

pure subroutine CALC (X, F)

real X(3), F(6)

!hpf$ nodescriptor :: X, F

...

end subroutine CALC

The NODESCRIPTOR directive should be used very carefully. This feature has not

been tested very carefully yet.

3 Support of Shared Memory Architectures

Within ADAPTOR, we want also to support shared memory architectures, e.g. SUN

Enterprise, SGI Origin, Convex, NEC SX/4 or NEC SX/5. Unfortunately, this support

is rather restricted.

� Shared arrays between SPMD processes use System V shared memory segments

that are usually available on these architectures. This feature is no more sup-

ported in the public domain version.

� ADAPTOR can compile HPF programs to Fortran programs containing shared

memory parallelization directives by -1 -mp=xxx. This feature causes a lot of

problems and is not well tested.

� There is a DALIB version that uses shared memory segments for message passing

target communication=SHM. This version should work, but can have problems

with large messages. Therefore we recommend to use the DALIB version for MPI

and to use an MPI implementation that is based on shared memory and therefore

more e�cient.

In summary, we recommend to use the HPF programming model on these shared

memory architectures just like on distributed memory architectures. We hope to have

better and more stable support in future versions.

5



4 Automatic Loop Parallelization

ADAPTOR 6.1 has now capabilities for the automatic detection of NEW and REDUCTION

variables in DO loops and the automatic identi�cation of INDEPENDENT DO loops. The

automatic loop parallelization is switched on by setting the following ag for the source-

to-source translation fadapt:

-auto

Note: Instead of using automatic loop parallelization features, it is always possible

to use the corresponding HPF directives directly in the source code.

4.1 NEW Variables

In a �rst step, ADAPTOR identi�es NEW variables. Every scalar variable in a DO

loop that is de�ned in every iteration before it is used becomes a NEW variable for the

corresponding DO loop. If ADAPTOR can verify that the scalar variable does not live

anymore at the end of the DO loop, it will print an info message. If ADAPTOR cannot

verify that the last value of the scalar variable if no more needed, it assumes that the

last value is no more used and prints a warning message.

do I = 1, N

do I = 1, N !hpf$ new (X), begin

X = 2.0 * float(I) X = 2.0 * float(I)

A(I) = X A(I) = X

end do !hpf$ end new

X = 1.0 end do

X = 1.0

INFO: X becomes a NEW variable

ADAPTOR 6.1 is not able to make a full data ow analysis for live and dead

variables in the presence of jump statements. Therefore it is not always possible to

identify that a scalar variable does not live anymore at the end of a loop. In this case,

ADAPTOR makes it also to a NEW variable and prints a warning message.

do I = 1, N

do I = 1, N !hpf$ new (X)

if (A(I) .gt. 0) then if (A(I) .gt. 0) then

X = A(I) X = A(I)

else else

X = -A(I) X = -A(I)

end if end if

A(I) = 2.0 * X A(I) = 2.0 * X

end do !hpf$ end new

goto 15 end do

6



goto 15

WARNING: X becomes a NEW variable (no last val assumed)

If the value of the variable X is used after the DO loop (X lives at the end of the loop),

the code might produce wrong results as the processors have not consistent values.

Beside the detection of NEW variables for DO loops, ADAPTOR also identi�es scalar

NEW variables within ON constructs.

!hpf$ on home (A(1)), begin !hpf$ on home(A(1)), new(X), begin

X = A(1) * B(1) X = A(1) * B(1)

C(1) = 2.0 * X C(1) = 2.0 * X

!hpf$ end on !hpf$ end on

ADAPTOR makes a scalar variable only to a NEW variable if it is sure that the

variable does not live anymore at the end of the ON construct. By this way, ADAPTOR

knows later that it is not necessary to broadcast the value of X from the executing

processor (or processor subset) to all the other processors.

4.2 REDUCTION Variables

In a next step, ADAPTOR identi�es scalar REDUCTION variables in DO loops.

!hpf$ reduction(X)

do I = 1, N do I = 1, N

X = X + A(I) * B(I) X = X + A(I) * B(I)

end do end do

INFO: X becomes a REDUCTION variable

ADAPTOR uses the same algorithm for the identi�cation of REDUCTION variables

that is used to verify the correct use of such variables appearing in a REDUCTION direc-

tive. MIN and MAX reductions programmed with IF statements will also be identi�ed.

!hpf$ reduction(X) ! maxval

do I = 1, N do I = 1, N

if (A(I) .gt. X) then if (A(I) .gt. X) then

X = A(I) X = A(I)

end if end if

end do end do

INFO: X becomes a REDUCTION variable

, Note: ADAPTOR does not identify array variables as reduction variables though

array variables can also be used in the REDUCTION directive. If it did, it could happen

that there would be a reduction over a whole array instead of a single element. In the

7



following example, it would not be useful to have a reduction over the whole array X

in the inner loop as only a single element is used for the reduction. Unfortunately, the

variable X is not a reduction variable for the outer loop as it is initialized within the

loop. Only after loop distribution, that is not supported and done by ADAPTOR, a

reduction over the whole array X would be useful.

do J = 1, N

X(J) = 0.0

do I = 1, N

X(J) = X(J) + A(I,J) * B(I,J)

end do

end do

4.3 Independent DO Loops

ADAPTOR identi�es DO loops as INDEPENDENT, if it can prove that there are no loop

carried dependences for the iterations of the loop. It uses a kind of Banerjee's equation

to verify the absence of loop carried dependences.

do J = K+1, N

do I = K+1, N

A(I,J) = A(I,J) - A(I,K) * A(K,J)

end do

end do

! becomes

!hpf$ independent

do J = K+1, N

!hpf$ independent

do I = K+1, N

A(I,J) = A(I,J) - A(I,K) * A(K,J)

end do

end do

For the dependence analysis it is important that NEW and REDUCTION variables have

already been identi�ed before as these kind of variables cannot cause any dependences

within the loop.

4.4 Induction Variables

Currently, ADAPTOR provides no support for recognizing induction variables in DO

loops. Therefore, the following loop will not be parallelized automatically.

K = 0

do I = 1, N

8



K = K + 1

A(I) = B(K) + C(I)

end do

The integer variable K is neither a NEW variable nor a REDUCTION variable. The DO

loop will not be classi�ed as an INDEPENDENT loop. The user has to rdo eplace the

induction K = K + 1 with a corresponding assignment K = I to get an INDEPENDENT

loop.

do I = 1, N

K = I

A(I) = B(K) + C(I)

end do

5 New Compiler Flags

The new version ADAPTOR 6.1 provides some more ags to drive the compilation of

HPF programs.

5.1 Compiler Flags in the Source Code

In certain situations, it is very convenient to specify compilation ags directly in the

HPF source code. It will allow the same compile command in a makefile though the

di�erent source �les should be compiled with di�erent ags. It also can make sure that

a certain source �le is really compiled with the appropriate ags.

The compilation ags can be set in the source code by using the following command

line directive:

!ADP$ FLAGS -auto -free -static -safety 0

subroutine sub (...)

...

end subroutine

Note: The FLAGS directive should only be used once in a source code as further

directives will overwrite the previous ags. It is also not possible to use di�erent ags

for di�erent subroutines within one source code.

5.2 Static Arrays

Many Fortran compilers allow �xed sized arrays to be considered as static arrays. They

will allocate local variables to a static storage area. Uninitialized local elements are

cleared to zero. Also common arrays will get a static storage area.

9



program P

parameter (N=100)

common /DATA/ U(N,N), V(N,N)

...

end

subroutine sub

parameter (N=100)

real A(N,N)

...

end

In this example code, the COMMON arrays U and V and the local array A can be

considered as static arrays.

Fixed sized arrays remain �xed sized arrays during the source-to-source transla-

tion of ADAPTOR as long as these arrays are not mapped and have not the DYNAMIC

attribute. But if they are mapped by the HPF mapping directives, ADAPTOR trans-

forms them to allocatable arrays as the size on one processor will be known only at

runtime. In the �nal code generation, allocatable arrays become pseudo-dynamic arrays

(out of range addressing of dynamically allocated memory with the malloc command

of C) and can be no more static.

ADAPTOR provides now a compiler ag to let the �xed sized arrays unchanged.

-static

Attention: Fixed sized arrays will use the full memory on every processor even if

the arrays are mapped.

5.3 Warning and Info Messages

Due to the demand of many users that want more feedback of the source-to-source

translation, ADAPTOR prints now more information and warning messages. This in-

cludes especially infos about the automatic parallelization and about the use of shadow

areas for mapped arrays. Warnings will inform the user where the translation was

not done as probably intended by the user (e.g. redistributions) or where ADAPTOR

assumes certain properties that are very likely but might result in wrong code if they

are not given (PURE subroutine calls in INDEPENDENT loops, no last value for scalar

variables in DO loops, etc.).

These kind of information and warning messages can be suppressed with the fol-

lowing compiler ags:

-w ! suppresses warning messages

-noinfo ! suppresses information messages

10



6 Fixed Bugs

Though ADAPTOR is already a rather stable compilation system, some bugs and

inconveniences of the last version have now been �xed in ADAPTOR 6.1.

6.1 Alignment of Pseudo-Dynamic Arrays

Dynamic arrays and mapped �xed sized arrays become pseudo-dynamic arrays during

the �nal code generation of the source-to-source translation of ADAPTOR.

integer, parameter :: N = 100

real A(N,N) ! becomes dynamic array

!hpf$ distribute A(block,block) ! due to the distribute directive

...

A(I,J) = 1.0

real, dimension (:,:), allocatable :: A

...

call dalib_local_sizes (A_DSP, MY_LB1, MY_UB1, MY_LB2, MY_UB2)

allocate (A(MY_LB1:MY_UB1,MY_LB2:MY_UB2))

ADAPTOR translates allocatable and automatic arrays to pseudo-dynamic arrays

that allow the compilation of the generated code by a FORTRAN 77 compiler. A small

one-dimensional array is used to access dynamically allocated memory on the heap via

out-of-range addressing. The multi-dimensional indexes are linearized.

real A(1:2) ! fixed size array for addressing

integer :: A_ZERO, A_DIM1, A_DIM2

...

call dalib_allocate (A_DSP, A) ! allocates A on the heap

! via the malloc routine

...

A(A_ZERO+A_DIM1*J+I) = 1.0 ! out of boundary addressing

The value of A ZERO stays for the di�erence between the addesses of the static

Fortran array A and the memory allocated on the heap divided by the size for one

element. In other words, the di�erence between the two addresses must be a multiple

of the size for one element. While this is usually the case for data types where one

element has 4 bytes (e.g. INTEGER, REAL), problems arise for 8 bytes data types (e.g.

DOUBLE PRECISION). If the dynamic data is allocated at an address which is a multiple

of 8, but the static array has an address that is not a multiple of 8, the following error

message appeared in previous versions:

array_access: static addr = -1073743036, dyn addr = 134750504

diff = 1208493540 is not multiple of size = 8

11



SERIOUS ERROR in DALIB (Distributed Array LIBrary)

==================================================

UNIT : CALC_PI

ERROR : alignment problem, use flag -f for compilation

stop execution

...

Certain Fortran compilers provided ags to force the alignment of static arrays at

8-byte boundaries, but not all of them (especially the GNU Fortran compiler on LINUX

systems). Also arrays of derived data types caused these runtime errors.

The new ADAPTOR version 6.1 has no more this problem. An internal o�set

is used to make the di�erence of the addresses a multiple of the element size. The

penalty is the allocation of some more bytes and some more data in the internal array

descriptors.

6.2 Loop Fusion

Loop fusion is an optimization heavily used by ADAPTOR. Unfortunately, the previous

versions had the following problems:

J = NY

do K = 1, NZ

X(J,K) = TMP(J,K,3)

end do

do K = 1, NZ

do J = NY-1,1,-1

X(J,K) = TMP(J,K,2)*X(J+1,K)

end do

end do

ADAPTOR fused the two K loops which was not correct due to the dependences of

the variable J.

J = NY

do K = 1, NZ

X(J,K) = TMP(J,K,3)

do J = NY-1,1,-1

X(J,K) = TMP(J,K,2)*X(J+1,K)

end do

end do

Another problem was due to the fact that ADAPTOR did not rename correctly the

indices of loops. The following two J loops were fused incorrectly.

12



do J = 1, N

B(I) = 1.0 do J = 1, N

end do B(I) = 1.0

do I = 1, N do J = 1, N

do J = 1, N A(J,J) = 1.0

A(I,J) = 1.0 end do

end do end do

end do

Both problems have been �xed and ADAPTOR is now hopefully safe for all kinds

of loop fusion.

6.3 Realignment

The REALIGN directive caused serious runtime errors in the following situation:

integer, parameter :: N = 10

real A(N,N,N), B(N,N,N)

!hpf$ dynamic :: A, B

!hpf$ distribute B(*,*,block)

!hpf$ align A with B

...

!hpf$ redistribute B(*,block,*)

!hpf$ realign A with B

...

The redistribution of B destroyed the old array descriptor of B to which the array

A was still aligned. The realignment of A resulted in runtime errors.

The runtime system now counts references to array descriptors of arrays or tem-

plates that might be no more existent and destroys them only if there is no more any

reference to it.

7 Tuning of HPF Programs

This section summarizes some important issues that should be considered to get good

performance out of HPF programs with ADAPTOR. These issues have been identi�ed

when looking at typical HPF programs of our users that have been translated with

ADAPTOR and where the performance was poor.

7.1 Overhead of HPF Programs

Many users complain about the overhead introduced by the HPF directives and by

the necessary modi�cations of the original program. The compiled HPF programs run

often on a single node much slower than the original Fortran program.

13



This overhead is of course very crucial for the acceptance of HPF. Within the

ADAPTOR project, we paid much attention to this problem and analyzed this overhead

very carefully. Some of the typical overheads are described in the following sections.

At this point it should be noted that ADAPTOR also allows the compilation of

an HPF program for a single node (gmdhpf -1 <program.hpf>). This version of the

program contains no communication at all. It can be used to verify the overhead that

comes from array operations and other code modi�cations. Any overhead here will also

appear when the program is compiled to an SPMD program. Tuning of the program

at this level is simpler and eliminates already a lot of performance problems.

7.2 Loop Ordering

Most Fortran programmers know that nearly on all machines it is better to run the

innermost loop for the �rst array index.

real, dimension (N,N) :: A, B

integer I, J

do J = 1, N

do I = 1, N

A(I,J) = A(I,J) + B(I,J)

end do

end do

ADAPTOR takes care of this for array operations.

A = A + B

! will be translated to

do J = 1, N

do I = 1, N

A(I,J) = A(I,J) + B(I,J)

end do

end do

But ADAPTOR does not change the order of nested loops in FORALL statements.

So the following loop results in poor performance:

forall (I=1:N, J=1:N) A(I,J) = A(I,J) + B(I,J)

! will be translated to

do I = 1, N

do J = 1, N

A(I,J) = A(I,J) + B(I,J)

end do

end do

14



ADAPTOR does not any loop interchanging, so users should be very careful about

the loop ordering. Performance problems of this kind can already be identi�ed when

compiling HPF programs for a single node.

7.3 SHADOW Areas

ADAPTOR creates automatically shadow areas for distributed arrays if it is appro-

priate. Especially for stencil operations, shadow areas increase the performance of the

program dramatically.

real, dimension (N,N) :: A, B

!hpf$ distribute (block,block) :: A, B

...

!hpf$ independent

do I = 2, N-1

!hpf$ independent

do J = 2, N-1

A(I,J) = f(B(I,J),B(I,J-1),B(I,J+1),B(I-1,J),B(I+1,J))

end do

end do

So ADAPTOR will insert the following directive automatically:

!hpf$ shadow B(1:1,1:1)

Unfortunately, there are still some situations that cause performance problems.

� If the array B is an use associated array and the corresponding module is not

in the same compilation unit (separate compilation), ADAPTOR cannot insert

a shadow area. A corresponding warning message should be considered and the

SHADOW directive should be inserted by hand directly in the source �le of the

module.

� If the array B is a dummy array, ADAPTOR inserts the shadow. But if the

actual argument has not enough shadow, a copy-in and copy-out operation will

be necessary that decreases the performance. ADAPTOR propagates the SHADOW

directives from dummy arguments to actual argument, but can do this only within

one compilation unit.

ADAPTOR now gives warnings in corresponding situations and the user should act

on them to get good performance.

15



7.4 Serial Loops

Any serial loop over a distributed array gives very poor code performance. The inner-

most statements will be executed by all processors that can imply a broadcast of single

elements that are used in the statements.

real, dimension (N,N) :: A, B

!hpf$ distribute (block,block) :: A, B

...

do I = 2, N-1

do J = 2, N-1

A(I,J) = f(B(I,J),B(I,J-1),B(I,J+1),B(I-1,J),B(I+1,J))

end do

end do

ADAPTOR would take this code and generate the following (pseudo-) SPMD pro-

gram:

do I = 2, N-1

do J = 2, N-1

X1 = broadcast (B(I,J-1))

X2 = broadcast (B(I,J+1))

X3 = braodcast (B(I-1,J))

X4 = broadcast (B(I+1,J))

if (is_local (A (I,J)) then

A(I,J) = f(B(I,J),X1,X2,X3,X4)

end if

end do

end do

The best way to increase the performance is to insert the INDEPENDENT directive

or to switch on the automatic parallelization. But nevertheless, there are some situa-

tions where ADAPTOR will serialize the loop and produce programs with a very low

performance:

� ADAPTOR cannot always identify INDEPENDENT loops automatically. Here the

user has to insert this property by inserting the corresponding directive.

� If a variable is used like a NEW or REDUCTION variable but this is not identi�ed
automatically or the corresponding directive is not given, ADAPTOR will serialize
the loop. In the following example, the loop is serialized to make sure that X
contains the correct value at the end of the loop.

!hpf$ independent

do I = 1, N

if (A(I) .gt. 0.0) then

X = A(I)

16



A(I) = X * (X - 1.0)

end if

end do

In such situations, the use of the NEW directive will increase the performance

dramatically. If the last value of X is really important, the program should use

the REDUCTION directive:

X = 0.0

!hpf$ independent, new(Y), reduction(X)

do I = 1, N

Y = A(I)

if (Y .gt. 0.0) then

X = max (X, Y)

A(I) = Y * (Y - 1.0)

end if

end do

� ADAPTOR is not always able to extract communication out of parallel loops. A
typical example is the following loop:

!hpf$ distribute (block) :: A

!hpf$ independent, new(K)

do I = 2, N

K = I - 1

A(I) = A(I) + A(K)

end do

In such situations, it is very helpful for ADAPTOR to replace the index K di-

rectly with the expression I-1 (forward substitution). One of the next versions

of ADAPTOR will do this automatically.

� If an independent loop is serialized, ADAPTOR gives a warning message. The

user should analyse the intermediate �les (use the ag -G) very carefully to iden-

tify the problem. At �rst, it should be veri�ed that ADAPTOR has chosen a good

home for the loop iterations. If not, the HOME directive should be used. Then it

should be veri�ed whether ADAPTOR could really extract all necessary commu-

nication. If this was not possible, the user can do this very often by himself. He

has to create a temporary array aligned to the loop iterations and to de�ne it

with the non-local values.

17



References

[BHK98a] T. Brandes and R. H�over-Klier. ADAPTOR Installation Guide (Version

6.0). Technical documentation, GMD, June 1998. Available via anonymous

ftp from ftp.gmd.de as gmd/adaptor/docs/iguide.ps.

[BHK98b] T. Brandes and R. H�over-Klier. ADAPTOR User's Guide (Version 6.1).

Technical documentation, GMD, December 1998. Available via anonymous

ftp from ftp.gmd.de as gmd/adaptor/docs/uguide.ps.

[Bra98a] T. Brandes. ADAPTOR Programmer's Guide (Version 6.0). Technical docu-

mentation, GMD, June 1998. Available via anonymous ftp from ftp.gmd.de

as gmd/adaptor/docs/pguide.ps.

[Bra98b] T. Brandes. Implementation and Evaluation of Nested Task and Data Par-

allelism for High Performance Fortran within the ADAPTOR Compilation

System. Working paper (unpublished), GMD, 1998.

18


