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Abstract

ADAPTOR (Automatic DAta Parallelism TranslatOR) is a public domain High Performance

Fortran (HPF) compilation system developed at the GMD during the last years. The tool transforms

data parallel programs written in Fortran with array extensions, parallel loops, and layout directives

into programs with explicit message passing. It can also compile the data parallel programs for

virtual shared memory systems to take advantage of global address spaces. This version is especially

devoted to implement the approved extensions of the HPF 2.0 standard not implemented so far. This

includes especially the advanced mapping features and task parallelism. From the previous versions

it contains already a lot of optimization techniques.

This manual describes the language features which are supported by ADAPTOR and where there

are still some restrictions. Furthermore it will be explained how to use ADAPTOR to get e�cient

HPF programs.

1 Overview

The ADAPTOR tool o�ers the possibility to write e�cient data parallel programs without explicit mes-

sage passing. This is realized by using the inherent parallelism of array operations and/or parallel loops

on arrays where the arrays are distributed among the available processors. Necessary communication will

be generated automatically.

Attention: ADAPTOR has no features for detecting loop parallelism of a sequential loop. Sequential

loops will not be parallelized automatically.

As the tool has been designed originally to run Connection Machine Fortran programs [Thi91] on MIMD

architectures, the source language was strongly related to CM Fortran. CM Fortran supported already

many features of Fortran 90 [ABM+92]. With the introduction of High Performance Fortran (HPF)

[Hig94, KLS+94], ADAPTOR supports now this standardized data parallel language.

This manual describes which features of the di�erent languages (FORTRAN 77, Fortran 90, Fortran 95,

High Performance Fortran: Base Language and Approved Extensions) are supported.

While section 2 describes only the new features of the latest version, section 3 gives a summary of all

features supported or not in ADAPTOR. Afterwards, the �rst part of this manual presents all the features

of Fortran 90 (17.2) of HPF regarding mapping of data (4), data parallelism (7), intrinsic (17.22) and

extrinsic procedures (9).

The second part of this manual is related to the execution of HPF programs on parallel machines and

should give a more detailed understanding how an HPF compiler like ADAPTOR translates the data

parallel programs. After a more general introduction (11) it will be explained where no communication

is necessary (12), where global communication (13), structured communication (14) or unstructured

communication (16) is generated by the compiler.

The appendix summarizes the new features of Fortran 90 (Section 17.2).

2 About the new Version 6.0

The main di�erences between version 6.0 and the previous version of ADAPTOR (version 5.1) are:

� ADAPTOR supports block-cyclic distributions, CYCLIC(N) with N � 2.

� ADAPTOR supports INDIRECT distributions as speci�ed in the HPF 2.0 standard.

� ADAPTOR supports ARBIRTRARY distributions as speci�ed by Moreira et. al. [MEKN96].
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� Arrays can now be distributed onto processor subgroups.

� Processor subgroups can be used within the ON directive.

� ADAPTOR supports task parallelism as speci�ed in the HPF 2.0 standard. Communication be-

tween tasks might be possible by using the array descriptors of non-local arrays (non-portable) or

by using the HPF TASK LIBRARY.

� Embedded dimensions for an alignment can be used without restrictions.

� ADAPTOR supports the new machine-speci�c SELECT directive to select dimensions of arrays for

vectorization and/or shared memory parallelization.

Furthermore, unstructured communications based on indirect addressing are realized more e�ciently.

The ADAPTOR speci�c MAP directive (available until version 5.1) is no longer supported.

3 Overview of the ADAPTOR Input Language

The front end has been designed in such a way that all features of FORTRAN 77, Fortran 90, Fortran 95

and HPF are parsed.

Nevertheless ADAPTOR does still not support all features of these languages. But the user will get

information about the unsupported features in his code.

3.1 Supported Features of Fortran 90

The following extensions of Fortran 90 [ABM+92] can be used within ADAPTOR:

� array expressions and array assignments,

� intrinsic functions for arrays (with some exceptions),

� dynamic arrays,

� array-valued functions,

� assumed-shaped arrays,

� optional arguments,

� new declaration statements,

� new loop constructs CASE, EXIT, and CYCLE,

� the binary operations <>, /=, ==, <=, <, >, and >= instead of .ne., .eq., .le., .lt., .gt., and

.ge.,

� ending comments starting with !,

� semicolon ; for separating statements,

� using & for continuation lines,

� free source format.
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Furthermore, the following Fortran 90 features can be used if there is a Fortran 90 compiler available on

the target machine:

� parameterized data types and numeric inquiry functions,

� modules,

� derived data types,

� contained procedures,

� generic procedures,

� overloading of operators.

3.2 Supported Features of Fortran 95

ADAPTOR supports the following features of Fortran 95 that have been formerly part of HPF 1.1

� FORALL statement and FORALL construct,

� PURE procedures.

3.2.1 Supported Features of HPF 2.0 Base Language

The following HPF features are supported:

� processor directives and di�erent abstract processor arrays,

� distribution directives of HPF,

� alignment directives of HPF

� some new HPF intrinsic functions (e.g. NUMBER OF PROCESSORS, xxx SCATTER),

� serial routines (HPF SERIAL),

� independent DO loops.

� REDUCTION directive for INDEPENDENT loops,

� local and serial EXTRINSIC procedures.

The most important restrictions are:

� no strides in alignments to distributed dimensions that are not SERIAL or BLOCK distributed.

� no access to non-local data within PURE routines.

Attention: In some situations, especially when using complex independent loops, complex array expres-

sions and complex indirect addressing, ADAPTOR will fail to translate the data parallel code. In this

case, the system will give an appropriate error message and the user has to �nd a workaround. Ex-

periences with previous versions have shown that this also might help to write more e�cient parallel

programs. Indeed, the restrictions are mainly due to the fact that in this situation ADAPTOR does not

know how to generate e�cient code.
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3.3 Support of Approved Extensions of HPF 2.0

ADAPTOR supports the following approved extensions of HPF 2.0 [Hig97]:

� general block distributions,

� indirect distributions,

� ON HOME directive,

� RESIDENT directive.

� TASK REGION construct.

� shadow edges for arrays can be explicitly de�ned by directives.

� processor subgroups,

Not supported are:

� pointers to distributed arrays,

� mapping of any components within derived types,

3.4 New Features of ADAPTOR

Furthermore, ADAPTOR realizes some features that are not standardized until now:

� ARBITRARY distributions where blocks of di�erent sizes within one dimension can be mapped to

di�erent processors.

� ADAPTOR allows the use of the REDUCTION directive outside of parallel loops.

� With the SHARED directive, distributed arrays will be put in a shared or virtually shared memory

segment (but only if this is supported on the target machine).

� Indirect addressing requires the complex computation of a communication schedule. This schedule

can be reused if the involved integer arrays have not been modi�ed. But whether an array has been

changed or not requires complex data 
ow analysis that is not available in ADAPTOR. With the

TRACE directive the user speci�es that an integer array used for indirect addressing will be marked as

invalid after an update. As long as it has not been updated, the schedule for the indirect addressing

can be reused.

� ADAPTOR supports the new machine-speci�c SELECT directive to select dimensions of arrays for

vectorization and/or shared memory parallelization.

3.5 Front End Problems

Currently, the front end of ADAPTOR has some problems. In the following all known problems are listed

by an example that will not work in the current release.

� ADAPTOR cannot deal with Holerith constants (except in FORMAT statements, but there might

also be problems in certain situations).
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DATA PGNAME/8HPAMCRASH/ ! synax error

450 FORMAT(1H ,20(1H!),16H FEHLERAUSGANG (,I2,1H),16(1H!))

� Do not use array variables with a name that has some other meaning in Fortran. In this case, the

array variable should be renamed.

INTEGER DATA (100)

DATA = 10

DATA (50) = 3 ! this makes problems

� Blanks are signi�cant for the frontend. Do not use blanks within names, numbers and relational

operators.

C O M M O N / / A

A = 21 000 000.d0

IF (0. EQ. A) ...

� no PAUSE statement,

� no alternate returns.

3.6 Known Problems

3.6.1 Problems with Dynamic Arrays

When translating array operations to serial DO loops ADAPTOR needs information about the bounds

of the array dimensions. Therefore it takes the expressions of the ALLOCATE statement or of the array

declaration.

subroutine S (N)

real, dimension (N) :: A

real, dimension (:), allocatable :: B

allocate (B(N))

...

c A(2:) = B(:N-1) will be translated to

do I = 2, N

A(I) = B(I-1)

end do

deallocate (B)

Therefore the variables within the index expressions must not be rede�ned during the lifetime of the

corresponding array.

allocate (B(N))

N = N + 1 ! might cause serious problems

B(:) = B(:) + 1

deallocate (B)

3.7 Restrictions for Redistributions

ADAPTOR supports the REDISTRIUBTE statement and REALIGN statement. This has been proven to be

very convenient for some applications, especially when the distribution is computed during the initializa-

tion.

But it assumes that every access to a distributed array has only one reaching distribution, and this is the

last syntactical DISTRIBUTE or REDISTRIBUTE statement.
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3.8 Restrictions for the ON Directive

The ON HOME directive can restrict the execution to a single processor in one dimension, but not to a

subset of processors.

real, dimension (N) :: A

!hpf$ distribute (block) :: A

...

!hpf$ on home (A(1))

<statement> ! will be executed on the first processor

!hpf$ on home (A(1:4))

<statement> ! will be executed on all processors

3.9 Random Numbers

The intrinsic routine RANDOM DATA returns random numbers. In case of distributed arrays, this is a

parallel random number generator. The penalty is that the routine delivers di�erent random numbers

when executed on di�erent number of processors. Only when the program is executed on the same

number of processors, it delivers the same results.

4 Mapping of Data

4.1 Overview of Data Mapping

The central idea of the data-parallel programming model is the mapping of the array elements and the

corresponding work on these arrays onto the processors.

High Performance Fortran provides a two-level mapping of data objects to memory regions, referred

to as "abstract processors". Data objects (typically array elements) are �rst aligned relative to one

another. This group of arrays is then distributed onto a rectilinear arrangement of abstract processors.

Furthermore, there is a machine-dependent mapping of abstract processors to physical processors. Figure

1 illustrates the model.

Physical

Processors
Arrays Template / Arrays

optional

directives

distribute

directives

align

directives

Abstract  processors

Figure 1: Directives of High Performance Fortran

Within ADAPTOR the mapping of arrays is handled in two ways:
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� For the usual message passing execution model the directives specify how the data is distributed

onto the processors. Every processor will only allocate memory for its local part. Global addresses

have to be translated to local addresses. Sequence association between the elements of a distributed

array does not exist. Furthermore, the load of parallel loops is distributed in such a way that most

operations can be executed on local data.

� For shared arrays (see also section 4.6 the directives specify only how the operations on this data

are distributed. The data itself reside in a shared memory segment, global addresses remain global,

sequence association between the array elements still exists.

� Sequence association can be guaranteed by using the SEQUENCE directive (see also section 4.8). In

this case, the data will be replicated on all processors.

4.2 Distribution of Arrays

A distribute directive partitions an object between processors. The user can specify the dimensions of

the object (array or template) which should be distributed. A distribution guarantees that one processor

owns only a part of the original array. A node processor needs only memory for this local part.

4.2.1 One-Dimensional Distributions

A one-dimensional array with N elements can be distributed onto P processors in the following way:

� block-distributed (see �gure 2) where one processor contains a contiguous piece of size N=P or of
an explicitly speci�ed size B.

real, dimension (N) :: A

!hpf$ distribute A(block)

!hpf$ distribute A(block(B))

� cyclic distributed (see �gure 3) where every Pth element is on the same processor or every Pth

block of size B is on the same processor.

real, dimension (N) :: A

!hpf$ distribute A(cyclic)

!hpf$ distribute A(cyclic(B))

� general block distributed, With the usual block distribution, every processor gets the same block

size. The general block distribution allows to specify a certain size for every processor.

integer, dimension(4) :: SIZE = (/10,16,16,10/)

real, dimension (52) :: A

!hpf$ distribute A(gen_block(SIZE))

� indirectly distributed, where the actual mapping to the processors is speci�ed by an integer array

(map array).

integer, dimension(52) :: MAP = (/1,3,4,1,...,3,2,4,1/)

real, dimension (52) :: A

!hpf$ distribute A(indirect(MAP))
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� arbitrarily distributed, where the actual mapping is also speci�ed by a map array, but instead for

single elements one entry is given for a chunk of elements (see Figure 4).

It is speci�ed as arbitrary (N,LENGTH,MAP) where N is an integer scalar and LENGTH and MAP are

integer vectors of length (at least) N. It causes the axis to be divided into N blocks, numbered 1; :::; N .

The length of block i is LENGTH(i) and it is mapped to processor MAP (i); 1 � MAP (i) � P .

The length of the N blocks must sum up to length of the axis.

integer, dimension (6) :: LENGTH = (/10,8,8,12,6,6/)

integer, dimension (6) :: MAP = (/1,2,3,2,3,1/)

real, dimension (52) :: A

!hpf$ distribute A (arbitrary(6,LENGTH,MAP))
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(a) DISTRIBUTE A (BLOCK) (b) DISTRIBUTE A (BLOCK(14))

Figure 2: Block distribution of a one-dimensional array onto 4 processors

When a dimension is distributed, only the local part of it will be allocated on a single processor unless a

shadow edge is speci�ed. General block and indirect distributions are approved extensions of HPF 2.0.

Arbitrary distributions have been used by Moreira et al. [MEKN96], they are not standardized, but can

be considered as a mixture of general block and indirect distributions.

4.2.2 Multi-Dimensional Distributions

Multi-dimensional arrays can also be distributed on one-dimensional processor arrays. Only one dimen-

sion of the array will be distributed while the other dimensions become serial (see Figure 5).

In case of multi-dimensional arrays it is possible to distribute them onto multi-dimensional processor

arrays. For the distributed dimensions, the user can specify di�erent distributions (see Figure 6).

In the current version of ADAPTOR up to four dimensions can be distributed.

real, dimension (N,N,N,N) :: C

!hpf$ distribute C(block, block, *, cyclic)
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Figure 3: Cyclic distribution of a one-dimensional array onto 4 processors
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Figure 4: Arbitrary distribution of a one-dimensional array onto 3 processors
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Figure 5: Distributions of a two-dimensional array with a serial dimension
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Figure 6: Distributions of a two-dimensional array onto 4 processors.

4.3 Abstract Processor Arrays

Arrays are distributed onto a rectilinear arrangement of abstract processors (also called torus). The

following commands will de�ne a one-dimensional torus with 4 processors, one with 8 processors and a

two-dimensional torus with 4 processors.

!hpf$ processors P1 (4)

!hpf$ processors P2 (8)

!hpf$ processors P3 (2,2)

The de�nition of processor arrays is like the de�nition of automatic arrays (see section 17.4.2). The size

can be speci�ed with values that will only be known at runtime.

subroutine SUB (N1, N2)

integer N1, N2

!hpf$ processors TORUS1 (N1, N2)

!hpf$ processors TORUS2 (number_of_processors()/N1,N1)

Arrays can be distributed onto such processor arrays.

real, dimension (M1,N1) :: A1

real, dimension (M2,N2) :: A2

real, dimension (M3,N3) :: A3

!hpf$ distribute A1 (*,block) onto P1

!hpf$ distribute A2 (*,block) onto P2

!hpf$ distribute A3 (cyclic,block) onto P3

Operations on A1 will only be executed by processors that belong to the abstract processor array P1.

Arrays can also be mapped to properly speci�ed processor subsets. This is most useful in conjunction

with the tasking construct, see Section 8.1.

!hpf$ processors P (10)

real, dimension (N, N) :: A1, A2

!hpf$ distribute A1 (*,block) onto P(1:5)

!hpf$ distribute A2 (*,block) onto P(6:10)

4.4 Alignment of Arrays

ADAPTOR supports the alignment directives of HPF. In the following some examples of using alignment

directives are given:
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4.4.1 Alignment to a Template

The �rst example shows a typical use of a template. If the distribution of the template is changed (only

one declaration), the distribution of all aligned arrays will be changed.

!hpf$ template T (NQPX,NQPX,NKPX)

!hpf$ distribute T (*,*,block)

double precision, dimension (5,NQPX,NQPX,NKPX) :: U0, U, UP

double precision, dimension (5,NQPX,NQPX,NKPX) :: FU, GU, HU, KU

double precision, dimension (NQPX,NQPX,NKPX) :: TMP, TMP1

!hpf$ align (*,:,:,:) with t(:,:,:) :: uo, u, up

!hpf$ align (*,i,j,k) with t(i,j,k) :: fu, gu, hu, ku

!hpf$ align (:,:,:) with t(:,:,:) :: tmp

!hpf$ align with t :: tmp1

It is recommended to use align-dummies in the alignment directive. The use of ":\ causes problems for

di�erent shapes.

PARAMETER (n=100)

REAL a(1:n), b(2:n+1)

!hpf$ distribute a(block)

!hpf$ align b(i) with a(i-1)

C the directive align b(:) with a(:) results in wrong code

4.4.2 Serial Dimensions

Looking at the source of the alignment, a source dimension can be mapped to a dimension of the target

or not. In the latter case, the dimension of the source array is collapsed, it becomes a serial dimension.

!HPF$ TEMPLATE T(N)

      REAL A(N,N), B(N,N)

!HPF$ ALIGN A(I,J) WITH T(J)

!HPF$ ALIGN B(I,J) WITH T(I)

1 2 3 ... N

1 2 3 ... N

A

T

1 2 3 ... N

1

2
3

...

N

T

B

Figure 7: Serial/collapsed dimensions.

A collapsed dimension is the same as aligning it to a serial template dimension.

!hpf$ template T (N) !hpf$ template T(N,N)

REAL A(N,N) REAL A(N,N)

!hpf$ align A(*,J) with T(J) !hpf$ align A(I,J) with T(I,J)

!hpf$ distribute T(block) !hpf$ distribute T(*,block)

Serial dimensions are very important as the compiler will already know at compile time that no commu-

nication will be involved if the accesses have only di�erent values in the serial dimensions.
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!hpf$ template T (N)

REAL A(N,N), B(N,N)

!hpf$ align A(*,I) with T(I)

!hpf$ align B(I,*) with T(I)

A(I,K) = A(J,K) ! no communication

B(I,K) = B(I,J) ! no communication

B(1,3) = A(5,1) ! no communication

4.4.3 Permutations

The HPF alignment directive allows also to interchange dimensions between alignee and align-target.

!hpf$ template T3 (N,N,N)

REAL A3(N,N,N) ! permutation of dimensions

!hpf$ align A3(I,J,K) with T3(K,I,J)

4.4.4 Linear Embeddings

An alignment represents an embedding if the speci�ed mapping is an injective mapping.

The embedding can be given by an injective mapping for every dimension.

!hpf$ template T2 (N,N)

REAL A2 (N2,N2) ! embedding

!hpf$ align A2(I,J) with T2(2*I,2*J-1)

!hpf$ template T2 (0:N+1,0:N+1)

REAL A2 (N,N) ! embedding

!hpf$ align A2(I,J) with T2(I,J)

1 2 3

1 2 31 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 ... 1 2 3 4 5 6 7 8 9 ...

X2

X1

1 2 3 4 5 6 7 8

T T

X1

X2

!HPF$ TEMPLATE T(0:N+1)

      REAL X1(N)

      REAL X2(N)

!HPF$ ALIGN X1(I) WITH T(I-1)

!HPF$ ALIGN X2(I) WITH T(I+1)

      REAL X2(N)

      REAL X1(N)

!HPF$ ALIGN X1(I) WITH T(2*I)

!HPF$ TEMPLATE T(1:2*N)

!HPF$ ALIGN X2(I) WITH T(2*I-1)

Figure 8: Linear embedding of an array into a template.

4.4.5 Embedded Arrays

If the alignee has less dimensions than the align-target, the array can be mapped to certain positions in

the align-target.

Embedded dimensions are currently not supported with ADAPTOR.
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!HPF$ TEMPLATE T(N,N)

      REAL A(N), B(N)

!HPF$ ALIGN A(I) WITH T(I,3)

!HPF$ ALIGN B(I) WITH T(3,I)

B

A T T

Figure 9: Embedding of an array into a template.

PARAMETER (n=100,m=50)

REAL a(m,n)

REAL t1(m), tn(m)

!hpf$ distribute a(block,block)

!hpf$ align t1(i) with a(i,1)

!hpf$ align tn(i) with a(i,n)

...

tn(1:m) = a(1:m,n) ! no communication

a(1:m,1) = t1(1:m) ! no communication

4.4.6 Replication of Arrays

1 2 3 ... N

1
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...

N

1 2 3 ... N

T

A

1 2 3 ... N

1 2 3 ... N

1

2
3

...

N

T

B

!HPF$ TEMPLATE T(N,N)

      REAL A(N), B(N)

!HPF$ ALIGN A(I) WITH T(I,*)

!HPF$ ALIGN B(I) WITH T(*,I)

Figure 10: Replication of an array

!hpf$ template T2 (N,N)

REAL A1 (N) ! replication along one dimension

!hpf$ align A1(I) with T2(I,*)

4.4.7 Restrictions for Alignment

Currently, ADAPTOR has the following restrictions for the alignment:

� ADAPTOR must know the values for a linear embedding at compile time.

REAL A(M), B(N)

!hpf$ align A(I) with B(C*I+D) ! C, D must be known at compile time

� Scalar variables cannot be aligned.
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REAL A, B(N)

!hpf$ align A with B(5) ! no alignment for scalar variables

� Alignment with a stride is only supported to a serial dimension or to a block distributed dimension.

real, dimension (N,N) :: A

real, dimension (M,M) :: B

!hpf$ distribute A(block,cyclic(3))

!hpf$ align B (I,J) with A(I,J) ! okay

!hpf$ align B (I,J) with A(2*I,J) ! okay

!hpf$ align B (I,J) with A(I,2*J) ! not allowed

4.5 DYNAMIC Directive

ALIGN and DISTRIBUTE directives are declarative directives and must be placed in the declaration part

of a unit. They de�ne a static data mapping: once declared it cannot be changed at execution time.

HPF allows also for dynamic mapping of arrays. The executable directives REALIGN and REDISTRIBUTE

allow dynamic redistributions. These directives have the same syntax as the declarative directives, re-

spectively, and they must be placed in the execution part.

In addition, data objects that should be remapped dynamically must be declared as dynamic using the

DYNAMIC directive.

REAL A(N,N)

!hpf$ DYNAMIC :: A

!hpf$ distribute A(block,*) :: A

...

!hpf$ REDISTRIBUTE A(*,block) :: A

...

4.6 Shared Arrays

ADAPTOR supports shared arrays that will be mapped to the global address space of a parallel machine.

Attention: This feature is only available if the MIMD system supports something like shared data

structures or a global address space. Currently the most known feature are the System V shared segments.

real A(6,8), B(4,6), X, Y

!hpf$ distribute A(block,*)

!hpf$ distribute B(*,block)

!hpf$ shared B

...

The array B is now shared among all the processors.

The following rules apply for the SHARED directive:

� A replicated array cannot be shared. The SHARED directive is simply ignored.

� The mapping directive of HPF will be used for the work distribution of parallel loops and array

operations.

� Alignments to a shared array will not imply that the aligned array is also shared. A template

cannot be shared.

The advantage of a shared array is that the compiler is no longer responsible for emulating the global

addresses. It is no longer necessary to compute the owner of one element and to compute a local address

on the individual processors.
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4.7 The SELECT Directive

The mapping directives of HPF specify the distribution of the arrays, but they do not say anything about

the vectorization of operations in the corresponding dimensions.

select_directive : !adp$ select <ident> ( <select_spec_dim_list> )

select_directive : !adp$ select ( <select_spec_dim_list> ) :: <ident_list>

select_spec_dim : '*'

select_spec_dim : selector_list

selector_list : selector { | selector }*

selector : NOVECTOR

selector : VECTOR

selector : SKIP

selector : CONCUR

selector : NOCONCUR

The following example shows the use of the SELECT directive for the vectorization.

real, dimension (M,N) :: A, B

!adp$ select A(novector,*) ! do not vectorize operations over rows of A

!adp$ select B(*,vector) ! vectorize over columns of B

In the same way, as operations for the corresponding dimensions will be parallelized if they are distributed,

operations for the corresponding dimensions will be vectorized or not. No speci�cation * implies that the

compiler can make its own decision.

4.8 Sequence and Storage Association

If an array is distributed the user can make no assumptions about sequence or storage association of this

array.

Arrays in common blocks can also be distributed like other arrays. If a common block contains a dis-

tributed array, sequence association will not be guaranteed. Such a common block is called nonsequential.

The following rules must apply for a nonsequential common block:

� Every occurrence of the COMMON block has exactly the same number of components with each corre-

sponding component having exactly the identical type, identical shape and the same distribution.

� The de�nition of the COMMON block must have an occurrence in the main program (used for initial-

ization).

For replicated arrays sequence association is guaranteed. Sequence association can explicitly be speci�ed

by the SEQUENCE directive for a COMMON block.

If sequence association is speci�ed, all arrays in the common block will have to be replicated or will be

replicated if no layout directive is speci�ed.

COMMON /data/ a(100), b(100,n)

!hpf$ SEQUENCE /data/

If no other layout for a and b is given, a and b will become replicated arrays.
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5 Default and Underspeci�ed Mappings

A fully speci�ed mapping is given if the mapping is exactly �xed by the mapping directives. This implies

that there is not any choice for the compiler about the actual mapping.

An underspeci�ed mapping is given if the mapping directives are not complete. For local arrays with

underspec�ed mappings the compiler might choose the �nal mapping that is a specialization of the

underspeci�ed mapping (see Section 5.4). For dummy arrays the compiler will generate code that can

deal with all mappings of the actuals that are specializations of the underspeci�ed mapping. If the actual

mapping is not compatible with the dummy mapping, the data will be redistributed.

5.1 Default Mappings

There are some rules that de�ne a default mapping for arrays. A default mapping in this sense is a fully

speci�ed mapping as the compiler will not chose the mapping but apply certain rules.

5.1.1 Defaults for Implicit Mappings

If an array has not an explicit mapping, a default distribution will be assumed for this array. At the

moment the user can choose between two possibilities:

� every array is replicated by default,

� or every array is distributed in the last dimensions by default (with up to three distributed dimen-

sions).

In the following situations, an array will not be distributed by default:

� character arrays,

� arrays in derived data types.

5.1.2 Missing ONTO Clauses and Default Processor Arrays

A missing ONTO clause implies a default arrangement. But this arrangement is identical for distributees

that have identical shapes and identical explicit mappings.

REAL A(N,N), B(N)

!hpf$ distribute A(block,block)

!hpf$ distribute B(block)

By default an abstract processor array is de�ned for every possible rank. The size of the processor array

is always identical to the number of available processors. The shape of the processor array is chosen in

such a way that the number of processors is nearly identical for every dimension.

Table 1 shows some examples for initial abstract processor arrays.

If in a distribute directive the ONTO-clause is not speci�ed, the distribution will be onto the default

processor array whose rank is given by the number of distributed dimensions.

Attention: A missing ONTO-clause implies not an underspeci�ed mapping. Only ONTO * stands for an

underspeci�ed mapping.
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NP Torus 1 Torus 2 Torus 3

5 5 1 x 5 1 x 1 x 5

6 6 2 x 3 1 x 2 x 3

8 8 2 x 4 2 x 2 x 2

12 12 3 x 4 2 x 2 x 3

16 16 4 x 4 2 x 2 x 4

32 32 4 x 8 2 x 4 x 4

33 33 3 x 11 1 x 3 x 11

Table 1: Default abstract processor arrays in ADAPTOR.

5.1.3 Missing Distribution Format

If no distribution formats are speci�ed in a distribute directive, the compiler will chose block distributions

for the last n dimensions where n is the rank of the processor array.

program test ()

!hpf$ processors p(3)

real a(n,n)

parameter (n=100)

!hpf$ distribute onto p :: a

For this example the compiler will make the following full distribution:

!hpf$ distribute (*,block) onto p :: a

Attention: It is an error to specify a processor arrangement that has a greater rank than the rank of the

distributed object.

5.2 Underspeci�ed Mappings

An underspeci�ed mapping is given in the following situations:

� With the clause ONTO * an arbritrary processor arrangement can be speci�ed.

REAL A(N,N)

!hpf$ distribute A (block,block) onto *

� The following distribution formats can be used to be unspeci�c about the distribution of one

dimension: BLOCK(), CYCLIC(), GEN BLOCK, INDIRECT, ALL

� The following abbreviation can be used:

REAL A(N,N)

!hpf$ PROCESSORS P(4,4)

!hpf$ distribute A * onto P ! for distribute A(ALL,ALL) onto P

An alignment to a target that has an underspeci�ed distribution implies an underspeci�ed mapping for

the alignee. But it has to be observed that a specialisation of the distribution of the target will result in

a specialisation for the mapping of the alignee.
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5.3 Direct Alignments

An alignment of an array to its target is called direct if the following conditions hold:

� dimensions are not permutated (see section 4.4.3),

� there is no embedding or replication (see sections 4.4.5 and 4.4.6),

� the size of an aligned dimension is equal to the size of the corresponding target dimension

Attention: The last condition implies that there is no stride. But there might be an o�set.

REAL A(N,N), B(0:N-1,0:N-1,0:N-1)

!hpf$ template T(N,N,N)

!hpf$ align A(I,J) with T(I,J,*) ! not direct as there is a replication

!hpf$ align A(I,J) with T(2,I,J) ! not direct as there is an embedding

!hpf$ align B(I,J,K) with T(I+1,J+1,K+1) ! direct

!hpf$ align B(I,J,K) with T(J+1,I+1,K+1) ! not direct as permutation

A direct alignment implies that the alignment can be replaced by a corresponding distribution if the

align target has a distribution.

5.4 Specialization of Underspeci�ed Mappings

5.4.1 Specialization of Distribution Formats

First we de�ne a notion of specialization for dist-format.

1. Each dist-format is a specialization of itself. The following equivalences are given:

BLOCK(n) � BLOCK(m) i� m and n have the same value

CYCLIC(n) � CYCLIC(m) i� m and n have the same value

CYCLIC � CYCLIC(1)

2. BLOCK is a specialization of BLOCK(), GEN BLOCK and CYCLIC().

3. BLOCK() is a specialization of CYLCIC().

4. CYCLIC(m) is a specialization of CYCLIC().

5. GEN BLOCK(int array) is a specialization of GEN BLOCK.

6. INDIRECT(int array) is a specialization of INDIRECT.

7. * is a specialization of every dist-format.

8. Every dist-format is a specialization of ALL.
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5.4.2 Specialization via Distributed Objects

Let S and G be two named objects that are both distributed by a DISTRIBUTE directive.

The distribution of S is a specialization of the distribution of G if the following constraints hold:

1. The shapes of S and G are the same.

2. The distribution directive of G must have a dist-onto-clause of \ONTO *", or it must have a dist-onto-

clause specifying the same processor arrangement as that speci�ed in the distribution directive for

S.

3. Each dist-format must be a specialization (in the sense de�ned above) to the dist-format in the

corresponding position of the dist-format-clause in the distribution directive of S.

4. If the onto-clause of the distribution of G speci�es a processor arrangement, then '*' can only be a

specialization of '*'.

Note: The last condition guarantees that corresponding dimensions of S and G are mapped to the same

dimension of the processor array if they are distributed.

REAL S1(N,N), S2(N,N), S3(N,N)

REAL G1(N,N), G2(N,N), G3(N,N)

!hpf$ distribute S1 (block(10), block) onto P

!hpf$ distribute S2 (block, block) onto Q

!hpf$ distribute S3 (block, CYLCIC) onto Q

!hpf$ distribute G1 (block(),block()) onto P

!hpf$ distribute G2 (block(),block()) onto *

!hpf$ distribute G3 (CYCLIC(),CYCLIC()) onto *

For this example, the following relations hold:

� S1 is a specialization of G1, G2, G3

� S2 is a specialization of G2, G3 (but not of G1)

� S3 is a specialization of G3 (but not of G1 and G2)

� G1 is a specialization of G2

� G2 is a specialization of G3

REAL S1(N,N), S2(N,N), S3(N,N), S4(N,N)

REAL G1(N,N), G2(N,N), G3(N,N)

!hpf$ distribute S1 (block, *) onto P

!hpf$ distribute S2 (*, block) onto P

!hpf$ distribute S3 (block, *) onto Q

!hpf$ distribute S4 (*,*)

!hpf$ distribute G1 * onto P

!hpf$ distribute G2 (block(),block()) onto Q

!hpf$ distribute G3 (block(),block()) onto *

For this example, the following relations hold:

� S1 and S2 are specializations of G1,

� S3 is a specialiazation of G3, but not of G2

� S1, S2 and S3 are specializations of G3.

� S4 is s specialization of G3
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5.4.3 Specialization via Aligned Objects

Let S and G be two named objects where G is distributed by a DISTRIBUTE directive and S by a ALIGN

directive.

The mapping of S is a specialization of the mapping of G if all of the following relations hold:

1. The shapes of S and G are the same.

2. If the distribution directive of G has a dist-onto-clause that speci�es a processor arrangement, then

the ultimate target of S must also be distributed onto this processor arrangement.

3. Each dimension of S is either collapsed or aligned to a certain dimension of its ultimate target. In

the last case the dimension of the target must have a dist-format that is a specialization of the

dist-format in the corresponding position of the dist-format-clause in the distribution directive of

S.

4. If the dist-format of G is not underspeci�ed, then the corresponding dimension of S must be directly

aligned (same size as the align target).

5. If the onto-clause of the distribution of G speci�es a processor arrangement, then '*' can only be a

specialization of '*'.

6. If the onto-clause of the distribution of G speci�es a processor arrangement, then the corresponding

dimensions of G and S must map to the same dimension of the processor arrangement.

The above de�nition is very general. It says that the mapping of an aligned array can also be a special-

ization if it contains permutations, linear embeddings, embedded dimensions or replicated dimensions. It

must only be guaranteed that the dimension to which the dimension of the alignee is aligned to must be

distributed in a certain way.

!hpf$ template, dimension (N2,N2) :: T

!hpf$ distribute (block, block) onto P

real, dimension (N,N) :: A1, A2, A3

!hpf$ ALIGN A1(I,J) with T(I,J)

!hpf$ ALIGN A2(J,I) with T(J,I)

!hpf$ ALIGN A3(I,J) with T(2*I,2*J)

real, dimension (N,N) :: G

!hpf$ distribute G (block(),block()) onto P

� A1, A2 and A3 are all specializations of G.

5.4.4 Aligmments to Underspeci�ed Distributions

If an array is aligned to a target that has an underspeci�ed distribution, its mapping is in a certain

sense also underspeci�ed. Nevertheless, it makes no sense to de�ne a specialization of the aligned array

without considering the target. As soon as the distribution of the target has been specialized, it implies

a specialization of the alignee.

REAL G1(N,N), G2(N,N)

!hpf$ distribute G1(block(),block()) onto *

!hpf$ align G2(I,J) with G1(I,J)

In this example, the object G2 is aligned with the object G1. As the distribution of G1 is underspeci�ed,

the distribution of G2 is also underspeci�ed. In case of local arrays, the compiler will choose a fully

speci�ed mapping for G1 and G2. As soon as the mapping of G1 is �xed, it implies a mapping of G2.
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real, dimension (N,N) :: S1, S2, S3

real, dimension (N,N) :: G1, G2

!hpf$ distribute S1(block, block) onto P

!hpf$ align S2(I,J) with S1(I,J)

!hpf$ distribute S3(block,block) onto Q

!hpf$ distribute G1(block(),block()) onto *

!hpf$ align G2(I,J) with G1(I,J)

Attention: The HPF 2.0 standard says that S3 is a specialiazation of G1 and S1 is also a specialization

of G2. But S1 is obviously not aligned to S3.

6 Data Mapping in Subprogram Interfaces

6.1 Introduction

The data mapping features described in section 4 can also be used to describe the mapping of dummy

arguments.

The mapping of each such dummy argument may be related to the mapping of its associated actual

argument in the calling main program or procedure (the \caller") in several di�erent ways.

full speci�ed mapping The directive describes the mapping of the dummy argument. However, the

actual argument need not have this mapping. If it does not, it is the responsibility of the compiler

to generate code to remap the argument as speci�ed, and to restore the original mapping on exit.

This code may be generated in either the caller or in the called subprogram.

underspeci�ed mapping The mapping is underspeci�ed. The called subprogram must accept the

mapping of the actual argument if it is a specialization of the mapping of the dummy argument

(see section 5.4). Otherwise, remapping takes place in the same way as for fully speci�ed mappings.

inherited mapping The dummy argument has the INHERIT attribute. The called subprogram must

accept every mapping of the actual argument, a redistribution takes never place.

With the RANGE directive the user can be more speci�c about the possible mappings.

6.2 What Remapping is Required, and Who Does It

The ADAPTOR compiler will generate the code for the remapping in the called subprogram. So it

is usually not necessary to provide an explicit interface for the called subprogram in the caller. This

approach has been chosen for the following reasons:

� If the subprogram needs shadow edges, an additional local copy of data can be avoided.

� If the subprogram cannot deal with every actual mapping that is a specialization of the dummy

argument, it might chose a more speci�c distribution. As the routine itself is responsible for the

remapping, double remappings can be avoided.

Therefore it is not absolutely necessary to provide an explicit interface. Nevertheless, it is recommended

for the following reasons:

� HPF 2.0 requires explicit interfaces if arguments are remapped. Therefore explicit interfaces increase

the portability.
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� An explicit interface will allow that the caller can also do the remapping. For optimizations, this

might sometimes be more useful.

Attention: Within local and serial routines (EXTRINSIC("LOCAL",...), EXTRINSIC("SERIAL",...)), the

called routine will not do any remapping. In this case, an explicit interface is mandatory if a redistribution

is necessary.

6.3 Inherited Mappings and the Range Directive

If the INHERIT attribute is speci�ed for a dummy argument, the called subprogram must accept any

mapping of the actual argument. The actual argument will not be redistributed. Therefore a dummy

argument with the INHERIT attribute must not appear as an alignee in an ALIGN and not as a distributee

in a DISTRIBUTE directive.

The RANGE directive is used to restrict the possible mapping formats of the actual argument.

SUBROUTINE SUB (X)

REAL X(:,:)

!hpf$ INHERIT X

!HFP$ RANGE X (block(),block()) (*,GEN_block())

The object in the RANGE directive must have the INHERIT attribute. The mapping of the actual argument

must be a specialization of at least one of the format-clauses in the RANGE directive.

Attention: There is no runtime check to verify that the actual argument has really a certain mapping

REAL A(100, 100, 100)

!hpf$ distribute A(block, *, CYCLIC)

CALL SUB( A(:,,:,1) ) ! Conforming

CALL SUB( A(:,,1,:) ) ! Nonconforming

CALL SUB( A(1,,:,:) ) ! Nonconforming

....

SUBROUTINE SUB(X)

REAL A(:, :)

!hpf$ INHERIT X

!hpf$ RANGE X (block, *)

6.4 Passing Array Sections

In the most situations, ADAPTOR will use copy-in and copy-out for array sections passed to subprograms.

The only exception is given for inherited mappings.

REAL a(n,n)

...

CALL sub (a(2:n:2,:),a(1:n:2,:))

...

SUBROUTINE sub (x, y)

REAL x(:,:), y(:,:)

!hpf$ distribute x(block(),block()) onto *

!hpf$ INHERIT y

...

END SUBROUTINE sub
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6.5 Some Remarks about E�ciency

The more underspeci�ed a distribution is, the more general is the code.

� For fully speci�ed mappings the compiler can verify that two objects have the same mapping.

SUBROUTINE sub (A1, A2, N)

REAL A1(N), A2(N)

!hpf$ distribute (block) :: A1, A2

A1 = A2 ! same distribution, no communication

END SUBROUTINE sub

� For underspeci�ed mappings (here the missing onto-clause) the compiler must assume that A1 and
A2 are distributed onto di�erent processor arrangements.

SUBROUTINE sub (A1, A2, N)

REAL A1(N), A2(N)

!hpf$ distribute (block) onto * :: A1, A2

A1 = A2 ! distribution can be different (communication)

END SUBROUTINE sub

� For underspeci�ed mappings the ALIGN directive should be used to indicate relation between data.

SUBROUTINE sub (A1, A2, N)

REAL A1(N), A2(N)

!hpf$ distribute (block) onto *:: A1

!hpf$ align (I) with A1(I) :: A

A1 = A2 ! aligned, no communication

END SUBROUTINE sub

The following example shows how the mechanism can be used to realize e�cient code for di�erent distri-

butions.

integer, parameter :: N1=10, N2=2*N1, N3=4*N1, N4=8*N1

real, dimension (0:N1,0:N1) :: A1

real, dimension (0:N2,0:N3) :: A2

real, dimension (0:N3,0:N3) :: A3

real, dimension (0:N4,0:N4) :: A4

!hpf$ align A1(I,J) with A4(8*I,8*J)

!hpf$ align A2(I,J) with A4(4*I,4*J)

!hpf$ align A3(I,J) with A4(2*I,2*J)

CALL sub (a1,a2,N1)

CALL sub (a2,a3,N2)

CALL sub (a3,a4,N3)

SUBROUTINE sub (x, y, n)

real x(0:n,0:n), y(0:2*n,0:2*n)

!hpf$ distribute y(block(),block()) onto *

!hpf$ align x(i,j) with y(2*i,2*j)

...

END SUBROUTINE sub

� The actual mappings are always specializations of the dummy mapping of x, the alignment of the

actual argument for y is also true. So there will never be redistributions.

� The code for the subroutine will be still very e�cient.

� This example might not be e�cient when using inherited distributions with the RANGE directive.
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6.6 Di�erences to HPF

Due to the fact that this kind of directives could be combined and the new standard allows also under-

speci�ed mappings, we gave up this terminology and introduced a terminology based on underspeci�ed

mappings.

� A full speci�ed mapping for a dummy argument is like the prescriptive directive of HPF.

� A descriptive directive describes the mapping of the dummy. It is the responsibility of the caller

to insure that the actual as passed has this mapping. Similarly, remapping to restore the original

mapping on exit must also be done by the caller. HPF 2.0 does not make any longer a di�erence

between descriptive and prescriptive directives, an explicit interface is always required.

� A transcriptive directive is used to let the mapping unspeci�ed. The called subprogram must accept

the mapping of the argument as it is passed. Of course this means that the caller must pass this

mapping information at run-time. This corresponds to the underspeci�ed mappings of dummy

arguments.

7 Data Parallelism

7.1 Overview of Data Parallelism

Fortran 90 and Fortran 95 contain already a lot of features to speci�y explicit data parallelism:

� Array syntax and array statements,

� the FORALL statement and FORALL construct,

� intrinsic functions on arrays.

This data parallelism is already used by ADAPTOR to generate a parallel program.

HPF provides the following addtional possibilities for specifying explicit data parallelism:

� Array syntax and array statements,

� the FORALL statement and FORALL construct,

� the INDEPENDENT directive,

� extended intrinsic functions and standard library.

Figure 11 shows the semantic of the FORALL statement and the INDEPENDENT loop compared to the serial

loop. The execution order is less restrictive and increases the potential of parallel execution.

Attention: ADAPTOR has no features for automatic parallelization of serial loops.
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a(1)

d(1)

c(1)

b(2)

a(2)

d(2)

c(2)
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a(3)

d(3)

c(3)

b(1) b(2) b(3)

a(1) a(2) a(3)

d(1) d(2) d(3)

c(1) c(2) c(3)

b(1) b(2)

a(1) a(2)

d(1) d(2)

c(1) c(2)

Begin Begin Begin

End End End

b(3)

a(3)

d(3)

c(3)

FORALL I=1,3

END FORALL

DO I=1,3

END DOALL

DO I=1,3

END DO

   c(I) = d(I)

   a(I) = b(I)

   c(I) = d(I)

   a(I) = b(I)

   c(I) = d(I)

   a(I) = b(I)

!HPF$ INDEPENDENT

Figure 11: Execution order for serial and parallel loops.

7.2 The INDEPENDENT Directive

The INDEPENDENT directive can precede an indexed DO loop or FORALL statement or construct. It asserts

to the compiler that the operations in the following FORALL statement or construct or iterations in the

following loop may be executed independently { that is, in any order, or interleaved, or concurrently {

without changing the semantics of the program.

!hpf$ INDEPENDENT

DO i = 1, n

x(i) = a(i) * a(i)

d(i) = x(i) + c(i)

END DO

The INDEPENDENT directive can also be used for the FORALL statement.

!hpf$ INDEPENDENT

FORALL (i=1:n) a(ind1(i)) = a(ind2(i))

In the context of a DO loop, the INDEPENDENT directive can be combined with some other options:

� the NEW option speci�es variables that become private for one iteration (see also section 12.8),

� the REDUCTION option speci�es variables whose results will be combined at the end of the parallel

loop (see section 13.4),

� the ON HOME option can be used to specify the home of the iteration, where the iteration is executed,

� the RESIDENT assertion guarantees that no non-local data is referenced within one iteration.

These additional directives are only allowed for DO loops, but not for the FORALL statement or construct.

30



7.3 The ON Directive

The ON direcitve allows the programmer to control the distribution of computations among the processors

of a parallel machine. The ON directive speci�es an active processor set for a statement or a set of

statements.

!hpf$ on (variable) !hpf$ on (processors-elmt)

<stmt> <stmt>

!hpf$ on home (variable) begin !hpf$ on (processors-elmt) begin

<stmt> <stmt>

!hpf$ end on !hpf$ end on

The ON directive restricts the active processor set for a computation to those processors named in its

home. The home can also be a single processor.

The home can name a variable, a template, or a processors arrangement. For each of these possibilities,

it can specify a single element or multiple elements. This is translated into the processor(s) executing

the ON block as follows:

� If the home clause names a program object, then every processor owning any part of that object

should execute the ON block.

� If the home clause names a processor arrangement, then the processor(s) referenced there should

execute the ON block. E.g., for ON P(2:4) the statement will be executed on the three processors

P(2), P(3), and P(4).

Attention: ADAPTOR makes only a di�erence between a single element in the dimension and the full

dimension. ON HOME(A(2:4)) is therefore the same as ON HOME(A(:)), where ON HOME (A(2)) exactly

speci�es the processors owning the second element.

real, dimension (N) :: A1, A2

!hpf$ processors PROCS(4)

!hpf$ distribute A1 (block) onto PROCS(1:2)

!hpf$ distribute A2 (block) onto PROCS(3:4)

...

!hpf$ on (PROCS(1:2))

call TASK1 (A1,N)

!hpf$ on (PROCS(3:4))

call TASK2 (A2,N)

7.4 The REDUCTION Directive

In contrary to the HPF 2.0 language de�nition, ADAPTOR allows the completely independent use of

the REDUCTION directive.

!hpf$ REDUCTION (reduction_vars)

<statement>

!hpf$ REDUCTION (reduction_vars) BEGIN

<block>

!hpf$ END REDUCTION
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8 Task Parallelism

8.1 The TASK REGION Construct

The TASK REGION construct allows the user to speci�y that disjoint processor subsets can execute

blocks of code concurrently.

real, dimension (N,N) :: A1, A2

!hpf$ processors PROCS(4)

!hpf$ distribute A1 (*,block) onto PROCS(1:2)

!hpf$ distribute A2 (*,block) onto PROCS(3:4)

! define a task region, otherwise home will be ignored

!hpf$ task_region

!hpf$ on home (A1), resident

call TASK1 (A1,N)

!hpf$ on home (A2), resident

call TASK2 (A2,N)

!hpf$ end task_region

The task region has some advantages:

� clear speci�cation where task parallelism appears,

� it provides syntactical restrictions (every ON directive must be combined with the RESIDENT direc-

tive),

� the user guarantees no I/O interferences between the di�erent execution tasks.

The data parallel tasks TASK1 and TASK2 will be executed independently on di�erent processor subsets.

Actually, ADAPTOR provides no mechanism to map scalar data to a processor subset. Therefore it

should be avoided to pass scalar data to a task that will be modi�ed.

8.2 Data Parallel Pipelines

If there are data dependences between the tasks of a task region, these dependences are observed and

will lead to a serial execution. Nevertheless, it can be used to realize a pipeline between data parallel

tasks if the task region is executed within a loop.

!hpf$ processors PROCS(P)

real, dimension(N,N) :: A1,A2

!hpf$ distribute A1 (*,block) onto PROCS (1:P1)

!hpf$ distribute A2 (block,*) onto PROCS (P1+1:P)

...

do I = 1, 10

!hpf$ task_region

!hpf$ on home (A1), resident

call TASK1 (A1, N)

A2 = A1

!hpf$ on home (A2), resident

call TASK2 (A2, N)

!hpf$ end task_region

end do
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8.3 The HPF TASK LIBRARY

Communication between di�erent data parallel tasks might be possible if there are no dependences be-

tween the di�erent tasks and the tasks are executed on disjoint processor subsets. The tasks automatically

get a task identi�er starting with 1:

!hpf$ independent task_region

!hpf$ on (PROCS(1)) ! will be task 1

call STAGE1 ()

!hpf$ on (PROCS(2:3)) ! will be task 2

call STAGE2 (2)

!hpf$ on (PROCS(4:5)) ! will be task 3

call STAGE2 (3)

!hpf$ on (PROCS(6)) ! will be task 4

call STAGE3 ()

!hpf$ end task_region

Within a data parallel task, the HPF TASK LIBRARY can be used to communicate between di�erent tasks.

subroutine STAGE1 ()

use HPF_TASK_LIBRARY

...

end subroutine STAGE1

The following subroutines support the initialization and termination of data parallel tasks. They might

already be called implicitly when the data parallel tasks are invoked.

subroutine HPF_TASK_INIT ()

subroutine HPF_TASK_EXIT ()

The call of these routines is not mandatory but might assert additional runtime checks. They could

verify at runtime that the tasks of the current context are really mapped to disjoint processor subgroups.

Furthermore, at the end it could be veri�ed that there are no pending messages between the tasks.

The following subroutines return the size (number of data parallel tasks in the current context) and the

rank of the calling task (1 � rank � size).

subroutine HPF_TASK_SIZE (size)

integer, intent(out) :: size

subroutine HPF_TASK_RANK (rank)

integer, intent(out) :: rank

For the sending of data (scalars, arrays or array sections), the task identi�er of the target task must be

speci�ed.

subroutine HPF_SEND (data, dest)

integer, intent (in) :: dest

<type>, intent(in) :: data

The receiving of data is similiar. Every send must have a matching receive.

subroutine HPF_RECV (data, source)

integer, intent (in), optional :: source

<type>, intent(out) :: data
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The source argument is optional. By this way, it is possible to receive a message from an arbitrary task.

The implementation of point-to-point communication between data parallel tasks results in communi-

cation between the processors of the two processor subgroups that are involved. If distributed data is

exchanged, it is necessary to exchange the mapping information (descriptor exchange).

The following restrictions are given:

� If the tasks are not really executed concurrently, the code might result in a deadlock.

� Every send must have a corresponding receive as otherwise the communication will con
ict with

compiler generated communication outside the task region.

� Only scalar data can be received from any processor.

The following routines are helpful to avoid the descriptor exchange when the same schedule is used several

times.

subroutine HPF_SEND_INIT (data, dest, request)

integer, intent (in) :: dest

<type>, intent (in) :: data

subroutine HPF_RECV_INIT (data, source, request)

integer, intent (in) :: source

<type>, intent (out) :: data

integer, intent (out) :: request

subroutine HPF_TASK_COMM (request)

integer, intent (in) :: request

9 Extrinsic Procedures

ADAPTOR supports the EXTRINSIC facilities of HPF for serial and local routines. Local and serial

routines can be written in FORTRAN 77 or in HPF.

local routines:

a local routine allows to write single-processor code that works only on data that is mapped to a

given physical processor. In this sense, a local routine contains only local computations (see section

12).

Nevertheless it might be possible to call message passing commands within a local routine, but

in this case the user himself is responsible for any communication. But only local data can be

accessed within the local routine. Local routines can also be used to provide an HPF interface to

implementation-speci�c parallel libraries.

serial routines:

a serial routine allows to write code that will only be executed by a single physical processor.

9.1 HPF LOCAL Procedures

HPF LOCAL routines allow to write code that only works on local part of the arrays. ADAPTOR does not

act on mapping directives of the arrays within the routine, so the code will work for all kind of actual

arguments.

34



extrinsic (HPF_LOCAL) subroutine S (A, COL)

real, dimension :: A(:,:)

integer :: COL

.... ! code that works on the local part of A

end subroutine S

From the caller's standpoint, an invocation of a local procedure from a "global\ HPF program has the

same semantics as an invocation of a regular procedure.

If one processor is executing a local routine, it might be possible that only some processors are execut-

ing this incarnation. Therefore in a local routine it is not possible to have any global operation like

redistribution or calling global routines. So we have the following restrictions for local routines:

� Within a local routine only other local routines can be called. It is not possible to call any global

routine.

� Every mapping directive is considered as a descriptive directive. There can be never any redistri-

bution within a local routine.

As already mentioned, the user may:w all any message passing code within local routines. But then he

himself is responsible that the routine is executed by all participating processors.

9.1.1 HPF Local Routine Library

Local HPF procedures can use any HPF intrinsic or library procedures. In addition, a set of local library

routines are provided that can be used to get more information about the global view of the actual

arguments.

use HPF_LOCAL_LIBRARY

� The routines GLOBAL ALIGNMENT, GLOBAL DISTRIBUTION, and GLOBAL TEMPLATE can be used to

query the global mapping of an actual argument while the corresponding HPF routines would

return the local mapping that is the trivial one.

� The local library function MY PROCESSOR returns the identi�er P of the calling processor with 0 �

P < NP where NP is the number of processors returned by the global HPF LIBRARY function

NUMBER OF PROCESSORS.

� ABSTRACT TO PHYSICAL

� PHYSICAL TO ABSTRACT

� LOCAL TO GLOBAL

� GLOBAL TO LOCAL

� LOCAL BLKCNT

� LOCAL LINDEX

� LOCAL UINDEX

� GLOBAL SIZE returns the global size of an actual argument.
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9.1.2 Message Passing in HPF LOCAL Routines

Processors executing a local HPF routine can communicate with each other. The context is given by the

last global HPF context in which the local routine has been called.

The routines are also provided with the HPF task library (see section 8.3). So the routines in the local

model have the same syntax as the corresponding routines for communication between data paralllel

tasks.

� The subroutine TASK SIZE returns the number of processors executing the same local subroutine.

This number corresponds to the value of the global HPF LIBRARY function ACTIVE NUM PROCS as if

it has been called before the call of the local routine (within the local routine the number of active

processors is 1). The subroutine TASK RANK returns the corresponding id 1 � id � P where P is the

value return by TASK SIZE.

� Data can be sent by the routine HPF SEND, while HPF RECV allows the receiving of data. In contrary

to the corresponding routines of the HPF TASK LIBRARY, no exchange of array descriptors is required

as only communication between single processors is executed.

9.2 HPF SERIAL Procedures

9.2.1 Example for Serial Extrinsics

In some situations it is necessary that only one node calls a certain subroutine, e.g. for X-Windows

routines.

interface

extrinsic (hpf_serial) subroutine x_display_init (width, height)

integer width, height

intent (in) :: width, height

end

extrinsic (hpf_serial) subroutine x_show_image (image, width, height)

integer image (height, width)

integer height, width

intent (in) :: width, height, image

end subroutine

extrinsic (hpf_serial) subroutine x_new_action (hx1, hx2, hy1, hy2)

integer hx1, hx2, hy1, hy2

intent (inout) :: hx1, hx2, hy1, hy2 ! default is in-out

end

extrinsic (hpf_serial) subroutine x_display_exit

end

end interface

9.2.2 Invoking a Serial Routine

A serial routine will always be called by a single processor only. The compiler generates communication

to make sure that all parameter data is availabe on this processor. A serial procedure can also be called

with distributed data. In this case, the calling routine will generate an incarnation of the full array on

the node that will call the subroutine. After the call of the serial procedure all replicated data will be

broadcast and the distributed data will be restored. Information about the intent of the arguments will

be used to decide about the necessity.

Usually, a serial procedure will be executed by the �rst processor that executes also all I/O routines (in

this sense I/O operations are very similiar to serial routines). But if all are arguments are distributed on

one processor, that processor will run the call.
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real A(N), B(N)

!hpf$ distribute (block) :: A, B

...

call SERIAL (A(I), B(I)) ! will be executed by owner of A(I), B(I)

In this example, the routine SERIAL runs on the processor that owns A(I) and B(I). If such a call is

within a loop and at each iteration a di�erent processor is used, e�cient parallelism is given.

9.2.3 Interface for HPF SERIAL Routines

Attention: An interface block is usually mandatory to guarantee in the calling routine that the routine is

executed on a single processor. Only if the user speci�es a home for the subroutine call that corresponds

to a single processor and if the compiler accepts it, it is not necessary.

In a certain sense, a serial routine corresponds to a data parallel routine that is executed on a single

processor. The calling routine has to guarantee the locality of the arguments.

9.2.4 Execution of HPF SERIAL Routines

As a serial routine is always executed on a single processor, the HPF compiler has not to generate any

communication. All actual arguments are mapped to or have been mapped to the processor executing

the routine. Local variables become private variables.

9.2.5 Access to Global Data in Serial Routines

The HPF standard does not allow to share global data (e.g. COMMON blocks) between serial and global

HPF routines, for many good reasons. If global data is updated in a serial routine on a single processor,

this might result in inconsistencies. On the other hand, it is very useful to read replicated global data in

the serial routine. This is supported within ADAPTOR.

real A(N), B(N) ! replicated data

common /DATA/ A, B

read *, A, B

...

call SERIAL () ! will be executed by one processor

...

extrinsic (HPF_SERIAL) subroutine SERIAL ()

real A(N), B(N), X

common /DATA/ A, B

X = A(5) ! might be useful

A(3) = X ! not HPF conform as only one processor updates

...

end subroutine SERIAL

Furthermore, ADAPTOR will also generate code when global distributed data is accessed. Again, the

user is responsible that the serial routine only accesses data that is local on the executing processor. This

corresponds to the access of global data in a data parallel routine that is only executed on a subset of

processors.

module DATA

integer, paramter :: N = 100

real, dimension (N, N) :: A

!hpf$ distribute A(*,block)

end module DATA

program WORK

use DATA

...
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!hpf$ independent, on home (A(:,I))

do I = 1, N

call WORK_COL (I)

end do

...

end program WORK

extrinsic (HPF_SERIAL) subroutine WORK_COL (I)

use DATA

integer I

do K = 1, N

A(I,g(K)) = f(A(I,h(K))

end do

end subroutine WORL_COL

As this example shows, the serial routine is used to take advantage of the fact that all data is resident

when the routine is executed on the processor owning the i-th column of the distributed array A.

9.2.6 Library Access from Serial Extrinsics

Within a serial HPF program, all HPF LIBRARY routines can be called. The HPF LOCAL LIBRARY module

must not be used. Message passing within a serial routine is not useful as the routine is executed within

a context that consists of a single processor.

9.3 F77 LOCAL Procedures

The main di�erence between a HPF LOCAL and a F77 LOCAL routine is how arrays are passed. While in the

HPF model usually both, pointers and HPF array descriptors ("handles"), are passed, the F77 routine

will only expect one of them. This is simply due to the fact that HPF local routines will be compiled by

the HPF compiler (knowing about descriptors) while F77 local routines are compiled by a FORTRAN 77

compiler.

� LAYOUT('F77 ARRAY') (the default) vs. LAYOUT('HPF ARRAY')

� PASS BY('*') (the default) vs. PASS BY('HPF HANDLE')

The FORTRAN 77 Local Library is available. This includes the HPF-callable subgrid inquiry subroutine

HPF SUBGRID INFO as well as the FORTRAN 77-callable inquiry subroutines:

� F77 SUBGRID INFO,

� F77 GLOBAL ALIGNMENT,

� F77 GLOBAL DISTRIBUTION,

� F77 GLOBAL TEMPLATE,

� F77 ABSTRACT TO PHYSICAL,

� F77 PHYSICAL TO ABSTRACT,

� F77 LOCAL TO GLOBAL,

� F77 GLOBAL TO LOCAL,

� F77 LOCAL BLKCNT,

� F77 LOCAL LINDEX,
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� F77 LOCAL UINDEX,

� F77 GLOBAL SHAPE,

� F77 GLOBAL SIZE,

� F77 SHAPE,

� F77 SIZE, and

� F77 MY PROCESSOR.

If an HPF routine calls a local F77 routine, an interface must be available (exceptions for ADAPTOR

are explained later).

If all of the following conditions are true, an interface is not necessary (at least for ADAPTOR):

� There is no redistribution at the subprogram boundary.

� The F77 routine is a subroutine and not a function.

� The F77 routine does not expect any character argument.

9.4 F77 SERIAL Procedures

A F77 serial routine will be called only by one processor. The arguments itself are passed in the same

way as for F77 local routines.

The inquiry subroutines for F77 local routines can also be called within serial F77 routines.

10 HPF Intrinsic and Library Procedures

10.1 HPF Intrinsic Procedures

The system inquiry functions NUMBER OF PROCESSORS and PROCESSORS SHAPE are supported by ADAP-

TOR.

The system inquiry functions ACTIVE NUM PROCS and ACTIVE PROCS SHAPE of the approved extensions

are supported by ADAPTOR. The following rules apply:

� ACTIVE NUM PROCS returns the total number of processors executing the program the number of

processors exectuing the program along a speci�ed diemsnions of the processor array as determined

by the innermost ON block.

� ACTIVE NUM PROCS returns always 1 in serial or local routines.

The computational intrinsic function ILEN is not supported.

The extended version of TRANSPOSE of the HPF approved extensions is not supported.

ADAPTOR supports currently all subroutines and computational functions of the HPF library. It is

absolutely necessary to have an appropriate USE statement, otherwise the routines are not handled cor-

rectly.

The mapping inquiry subroutines HPF ALIGNMENT, HPF TEMPLATE, and HPF DISTRIBUTION are now avail-

able in ADAPTOR as this tool now supports also inherited distributions.
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The bit manipulation functions LEADZ, POPCNT and POPPAR are not supported.

The new reduction functions IALL, IANY, IPARITY and PARITY can be used with ADAPTOR.

With ADAPTOR, the array combining scatter functions XXX SCATTER are full supported and implemented

e�ciently.

Array pre�x and su�x functions XXX PREFIX and XXX SUFFIX are not supported by ADAPTOR.

The array sort functions GRADE DOWN, GRADE UP, SORT DOWN and SORT UP are not supported.

11 Execution Model of HPF Programs

This section describes the execution model of High Performance Fortran. Though the description is

related to the ADAPTOR compilation system, most of the techniques might also be applied within other

HPF compilers.

11.1 Serial Execution of HPF Programs

HPF programs can also run as serial programs. For this purpose, ADAPTOR treats them as follows:

� Directives are completely ignored, every array has exactly one full incarnation and independent

loops are executed serially.

� The FORALL statement and construct are serialized (this might cause the introduction of temporary
data).

FORALL (I=2:N-1) A(I) = f(A(I-1),A(I+1))

is translated to

ALLOCATE (TMP(2:N-1))

DO I = 2, N-1

TMP(I) = f(A(I-1),A(I+1))

END DO

DO I = 2, N-1

A(I) = TMP(I)

END DO

DEALLOCATE (TMP)

� Calls for INTRINSIC or HPF Library routines are replaced with calls to a special library version

that is available for serial execution.

11.2 The SPMD Model

The essential idea of the source-to-source-translation is to assign the arrays of the source program to the

memory of the node processors as speci�ed by the HPF mapping directives (see Figure 12).

The control 
ow and statements with scalar code are replicated on all nodes. The parallel loops and

array operations are restricted to the local part owned by the processor. Communication statements for

exchanging non local data will be generated automatically as subroutine calls to the runtime system.
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Figure 12: SPMD execution of HPF programs.

11.3 Home of Computations

Beside the ON HOME directive considered for the next HPF standard, HPF allows only to specify the

distribution of data but not to specify the work distribution. For this reason, the compiler has to decide

which statements will be executed by which processor.

The main criteria for the load distribution are:

� An assignment to a distributed variable will be executed by the processor that owns the element

on the left hand side (owner-computes rule). The needed data (values on the right hand side) must

be made available before.

� An assignment to a scalar or replicated variable will be executed by every processor.

� I/O statements are executed by one dedicated processor (see section 11.6).

� One iteration of an independent loop is executed completely on the home of this iteration. The
ownership is usually given by the �rst assignment to a distributed variable.

!hpf$ INDEPENDENT

DO i = 1, n

s = ....

x(i) = f(s, ...)

....

END DO

Iteration i is executed by the processor that owns the element x(i).

For optimization issues it might be the case that there are exceptions from these rules.

11.4 Active Processors

An active processor is one that executes an HPF statement or block. Usually, an HPF program begins

execution with all processors active. But the execution can be restricted to a subset of processors or to

a single processor in the follwoing cases:

� The ON directive (see section 7.3) restricts the active processor set for the duration of execution of

statements in its scope.

� Serial routines (see section 9.2) will be executed on a single processor.

41



11.5 Execution of Subroutines

Usually, every user subroutine and every user function will be entered by all processors. These are the

exceptions:

� A serial routine is only executed by a single processor.

� A pure subprogram is only executed by the processor that will call it. If it is called in a parallel

loop, only one processor will execute it.

� If the home is speci�ed, the call is assumed to be pure and the previous rules apply.

From the caller's standpoint, an invocation of a local procedure from a "global\ HPF program has the

same semantics as an invocation of a regular procedure.

11.6 I/O

ADAPTOR does not support parallel I/O until now. Currently I/O statements are translated in such a

way that I/O operations are executed by the �rst node process. In the following, this process is called

I/O process.

Due to the fact that only one process executes I/O statements there are some inconveniences that should

be observed.

� There are no problems when using replicated data in I/O statements. If a replicated variable is

updated by the statement (e.g. READ or in INQUIRE), the value is broadcast to all other processors

(implicit communication and synchronization).

� If distributed arrays are used in an I/O statement, the corresponding values have to be send to or
to be received from the I/O process (implicit communication). Therefore temporary data of the
corresponding size will be created.

REAL A(N,N)

!hpf$ distribute A(block,block)

...

READ *, A

is translated to

ALLOCATE (TMP_A (N,N))

!hpf$ distribute TMP_A (*,*)

READ *, TMP_A

A = TMP_A

DEALLOCATE (TMP_A)

Attention: As the full array is allocated on a single node, there might be memory problems with large

arrays. In such a case, it is recommended to read single columns or rows of a matrix.

12 Local Computation

The central idea of generating e�cient HPF programs is to ensure data locality. The more operations that

are performed between operands which reside on the same processor, the more e�cient the implementation

will be.

Therefore this section will show which data parallel statements need no communication and will be most

e�cient for parallel execution.

Attention: It is very important that already at compile time it can be recognized which operands are on

the same processor. Otherwise the compiler has to generate additional queries about data locality which

can be very expensive.
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12.1 Local Array Assignments

REAL a(n,n), a1(n,n)

!hpf$ distribute a(*,block) :: a, a1

REAL g

a = a1 ! no communication, same distribution

a = g ! g is replicated on all processors

a(1,1:n) = a(2,1:n) ! no communication

12.2 Local FORALL Statements

Similar to the array statements, FORALL statements will be identi�ed as local statements at compile time

if data is aligned or mapped to the same processor.

REAL a(n,n), b(n,n)

!hpf$ distribute (*,block) :: a, b

...

FORALL (i=1:n, j=1:n) a(i,j) = 1.0 / REAL(i+j-1)

FORALL (i=1:n, j=1:n, a(i,j) .NE. 0.0) b(i,j) = 1.0 / a(i,j)

12.3 Local Independent Loops

With a local independent DO loop it is possible to specify that all iterations of the loop can be executed

independently and no communication is necessary. This kind of loop was mainly intended for internal

representations within ADAPTOR as many other kind of array statements and parallel loops will be

translated internally to such loops. In some situations however, it might be useful to use this kind of

loop at user level.

Attention: The RESIDENT directive can only be used with the ON HOME directive.

!hpf$ INDEPENDENT, RESIDENT, ON HOME x(i)

DO i = 1, n

x(i) = a(i) * a(i)

d(i) = x(i) + c(i)

END DO

12.4 Using Alignment

By the ALIGNMENT directive arrays can be mapped in such a way that a computation does not need any

communication.

REAL a(0:2*n), b(0:n)

REAL a1 (1:2*n-1)

!hpf$ align b(i) with a(2*I)

!hpf$ align a1(i) with a(i)

...

FORALL (i=0:n) b(i) = a(2*i)

FORALL (i=1:2*n-1) a1(i) = a()

In this example the compiler will know at compile time that no communication is necessary. This would

not be the case without the ALIGNMENT directives.

If two arrays are distributed in the same way, a local computation can be identi�ed if the size of the

arrays is known at compile time. For allocatable arrays, the size might not be known at compile time.
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REAL, ALLOCATABLE :: A(:,:), B(:,:)

!hpf$ distribute (block,block) :: A, B

...

FORALL (I=1:N,J=1:N) A(I,J) = B(I,J)

This FORALL statement cannot be identi�ed as local computation because ADAPTOR must assume that

arrays A and B have di�erent sizes. With the ALIGN directive, the computation can be speci�ed as a

local one.

REAL, ALLOCATABLE :: A(:,:), B(:,:)

!hpf$ align B(I,J) with A(I,J)

...

FORALL (I=1:N,J=1:N) A(I,J) = B(I,J)

12.5 Using Shared Arrays

For INDEPENDENT loops the HPF compiler must usually insert communication for all data that is non-local

to the processor that executes the corresponding iteration of the loop.

!hpf$ INDEPENDENT

DO I = 1, N

A(f(I)) = B(g(I))

END DO

If the array A is shared no compiler-generated communication will be necessary for updating the values

of A.

If the array B is shared no compiler-generated communication will be necessary for accessing the values

of B.

12.6 PURE Procedures

Pure subroutines and pure functions can be used within parallel loops.

PURE REAL FUNCTION f (x1, x2)

REAL x1, x2

f = (x1 - 1) * (x2 + 1)

END

REAL a(n,m), ra(n,m)

INTEGER n, m

!hpf$ distribute ra(*,*)

FORALL (i=1:n,j=1:m)

a(i,j) = f(a(i,j), ra(i,j))

END FORALL

PURE SUBROUTINE s(i, x)

INTEGER i

REAL x

...

END

PROGRAM p

REAL a(n)

!hpf$ distribute a(block)

...

!hpf$ INDEPENDENT, RESIDENT, ON HOME a(i)

DO i = 1, n

a(i) = 1.0

CALL s(i, a(i))

END DO
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It is possible to call pure subprograms with replicated data. But an update is done only on the local

incarnation of the variable.

Access to local data will cause no problems in a pure subprogram. The following kind of application with

a pure subprogram is quite useful:

PURE SUBROUTINE p (i)

INTEGER i

COMMON /yom/ a

REAL a(100)

!hpf$ distribute a(block)

REAL x

x = a(i) + 1.0 ! no broadcast of a(i) required

a(i) = x ! a(i) is local data by assertion

END

By this way it is possible to work independently on local data of a common block.

12.7 Local Procedures

A local routine is called on every processor and has by default no communication in it. A serial routine

is called on a single processor and has no communication.

Nevertheless it might be possible to call message passing commands within a local routine, but in this

case the user himself is responsible for any communication. But only local data can be accessed within

the local routine.

Local routines can also be used to provide an HPF interface to implementation-speci�c parallel libraries.

If one processor is executing a local routine, it might be possible that only some processors are execut-

ing this incarnation. Therefore in a local routine it is not possible to have any global operation like

redistribution or calling global routines. So we have the following restrictions for local routines:

� Within a local routine only other local routines can be called. It is not possible to call any global

routine.

� Every mapping directive is considered as a descriptive directive. There can be never any redistri-

bution within a local routine.

As already mentioned, the user can call any message passing code within local routines. But then he

himself is responsible that the routine is executed by all participating processors.

PROGRAM WORK

REAL A(N,N)

!hpf$ distribute A(*,block)

...

CALL SUB (A,N)

...

END

12.8 Private Variables

A private variable is a variable that has an incarnation on every processor where every processor can

modify this variable for his purposes. Replicated variables have also an incarnation on every processor,

but the compiler takes responsibility that all processors have always the same value. All incarnations

of replicated variables must be consistent. This is not the case for private variables, its use requires no

communication at all.

Within the context of HPF, private variables will exist in the following situations:
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� A variable speci�ed in the NEW option of the INDEPENDENT directive is always private.

!hpf$ INDEPENDENT, NEW (s)

DO I = 1, n

s = ... ! no consistency for s required

x(i) + x(i) * s

END DO

The compiler has not to make sure that after the termination of the loop all processors will have

the same value of s.

� All local variables in a PURE procedure are private.

PURE FUNCTION ITERATE (I,J)

REAL X, Y ! private variables X, Y

INTEGER K ! private variable K

X = I * 0.01

Y = J * 0.02

K = 3

....

END FUNCTION

� All local variables in a LOCAL procedure are private.

Computations that work only on private variables will not imply any communication. The computations

are always local.

13 Global Communications

13.1 Broadcast

Every update of a scalar variable is done in such a way that every processor gets afterwards the actual

values.

S = S + 1 ! done by all processors

S = A(I) ! implies a broadcast

READ *, S ! implies a broadcast from the I/O node

These kind of updates are also done for replicated arrays.

13.2 Spreading

There are no problems for using the SPREAD function as long as the data is replicated along the dimension

over which the data is spread.

REAL a(n), b(m,n), g

!hpf$ distribute b(*,block)

!hpf$ distribute a(block)

...

b = SPREAD (SPREAD(g,1,n),1,m)

b = SPREAD (a,1,m)

In all other situations, the current restrictions for temporary arrays apply also for spread.

REAL b(m,n), a(n)

!hpf$ distribute (CYCLIC,block)

!hpf$ align a(i) with b(*,i)

b = SPREAD (a,1,m)

b = SPREAD (b(j,:),1,m) ! spread of a column

a = b(j,:) ; b = SPREAD (a,1,m)
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13.3 Reduction Functions

The following reduction functions are supported by ADAPTOR: ALL, ANY, COUNT, IALL, IANY, IPARITY,

SUM, PRODUCT, PARITY, MINVAL, MAXVAL, MINLOC and MAXLOC.

If the functions are used without a "dim" argument, the results must be assigned to a replicated variable.

PARAMETER (n=100)

REAL a(n), s

!hpf$ distribute (...) a

INTEGER ijk(3)

!hpf$ distribute ijk(*)

s = sum (a)

s = minval (a, a .gt. 0.0)

s = product (a(5:10))

ijk = minloc (a)

The reduction functions can be used with a "dim" argument, but in this case the value must be known at

compile time. ADAPTOR will create internally a temporary array that is replicated along the reduction

dimension.

PARAMETER (n=100)

REAL a(n,n), row(n), col(n)

!hpf$ distribute A (...,...)

!hpf$ align row(j) with a(*,j)

!hpf$ align col(i) with a(i,*)

row = sum (a, dim = 1)

col = sum (a, dim = 2)

13.4 Reduction Operations in Independent Loops

For the global reduction functions of Fortran 90, it is necessary to collect the results of a parallel loop in

a temporary array before. This array must have a size equal to the number of loop iterations.

PARAMTER (N=1000000)

REAL xa(N), x

...

FORALL (i=1:N) xa(i) = complicated_function(i)

x = sum (xa)

As this temporary array may be excessively large, a reduction feature has been proposed for HPF 2.0.

x = 0.0

!hpf$INDEPENDENT, REDUCTION (x)

DO i = 1, 1000000

x = x + complicated_function (i)

END DO

ADAPTOR implements this reduction variables as follows: on entry to an independent loop, every

processors has its own incarnation of the reduction variable (same type, same shape) associated with

each variable in the reduction clause on the INDEPENDENT directive. Its initial value is the same value

as it has before the entry of the loop. Each processor performs a subset of the loop iterations; when it

encounters a reduction statement, it updates its own copy of the reduction variable. A processor is free

to perform its loop iterations in any order.

The �nal value of the reduction variable is computed by combining the local values with the value of

the global reduction variable on entry to the loop. The combining is done in the same way as for the

Fortran 90 reduction functions.

Attention: ADAPTOR does not create a new local reduction variable (same type, same shape). It does

not initialize it to the identity element for the reduction operator at the entry of the loop.
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13.5 Simple Reductions

Beside the REDUCTION directive, it is possible to use also the REDUCE statement. Due to the fact, that

this is not standardized, the use of the directive is recommended.

REDUCE (fn, var, exp)

At �rst, every processor makes the reduction for its own local iterations (local reduction). The reduction

variable must be a replicated variable. After �nishing all iterations a global reduction between all node

processes is executed, the global value of the reduction is available in the reduction variable on all nodes.

REAL a(n)

!hpf$ distribute a(block)

...

s = 0.0

!hpf$ INDEPENDENT, RESIDENT, ON HOME a(i)

DO i=1,n

REDUCE (SUM, s, a(i))

END DO

Furthermore an array variable within the reduction expression is also considered to �nd out the home of

the iterations of a local independent loop.

The following reduction functions are available:

� COUNT for logical values

� SUM, PRODUCT for integer, real or complex values

� ANY, ALL, PARITY for logical values

� IALL, IANY, IPARITY for integer values

� MINVAL, MAXVAL for real or integer values

13.6 Position Reductions

With the previous reductions it is impossible to determine the position of a minimum or maximum. This

can be done with some additional parameters in the REDUCE statement.

REDUCE (pos_reduction, red_variable, red_expression,

pos_var1, pos_exp1,

...

pos_varn, pos_expn)

The semantic of this loop is that the position variables (replicated variables) will have the values of the

position expressions of the iteration where the minimum or maximum value has been found.

The following parallel loop determines the minimum value and its position in the two-dimensional array

B.

REAL b(n,n), min

!hpf$ distribute b(*,block)

INTEGER i1, i2, imin1, imin2

...

!hpf$ INDEPENDENT, RESIDENT

DO i2 = 1, n

DO i1 = 1, n

REDUCE (MINVAL, min, b(i1,i2), imin1, i1, imin2, i2)

END DO

END DO
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14 Structured Communication

Structured communication will be generated for all data parallel statements where every processor can

compute by its own the corresponding schedule for the communication. The schedule speci�es which

data has to be sent to other processors and which data has to be received.

14.1 Assignments with Regular Sections

A regular section of a distributed array can be assigned to another regular section of any other distributed

array. If this assignment needs communication, this will be usually very fast.

REAL a(n,n), a1(n,n)

!hpf$ distribute a(*,block) :: a, a1

REAL g

a(1:n,1) = a(1:n,2) ! fast communication

a(1:n-1,1:n-1) = a(2:n,2:n) ! fast communication

a(3:n,1:n-2) = a(1:n-2,3:n) ! fast communication

The following examples show that this kind of assignment can also be used to replicate data.

REAL a(n,n), ra(n,n), ra1(n)

!hpf$ distribute (CYCLIC,block) :: a

!hpf$ distribute (*) :: ra1

!hpf$ distribute (*,*) :: ra

INTEGER k

REAL g

ra = a

ra(2:n,1:n-1) = a(1:n-1,2:n)

ra1 = a(k,1:n) ! replication of the k-th row of a

ra1 = a(1:n,k) ! replication of the k-th column of a

Furthermore, such an assignment can imply the redistribution of a whole array.

integer N1, N2, N3, N4, N5, N6

parameter (N1=7, N2=9, N3=12, N4=5, N5=5, N6=4)

real A (N1, N2, N3, N4, N5, N6)

real B (N1, N2, N3, N4, N5, N6)

!hpf$ distribute A (block,*,block,*,*,*)

!hpf$ distribute B (block,CYCLIC,*,*,*,CYCLIC)

...

A = B ! redistribution of an entire array

...

B(5,2:4,3:7,4,:,:) = A(4,2:4,2:6,5,:,:) ! same for subsections

14.2 FORALL Statements with Structured Communication

A FORALL statement might require communication between the available processors.

REAL a(n), b(n)

!hpf$ distribute (block) :: a, b

...

FORALL (i=2:n-1)

a(i) = (b(i+1) + b(i-1) + 2. * b(i)) * .25

END FORALL
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14.3 Shifting

ADAPTOR supports the intrinsic function CSHIFT only for whole arrays. Source and target array must

have the same shape and the same distribution. Circular shifting is not possible for arrays with a cyclic

distributed dimension.

REAL b(m,n), g

!hpf$ distribute b(*,block) ! b is distributed

...

b = CSHIFT (b,1,1) ! no communication

b = CSHIFT (b,2,-1) ! efficient communication

The intrinsic function EOSHIFT is supported in the same way.

14.4 Transpose

The intrinsic function TRANSPOSE causes no problems at all and will be handled in the same e�cient way

if communication is involved.

REAL a(m,n), b(n,m)

!hpf$ distribute (*,block) :: a, b

...

a = TRANSPOSE (b)

a(2:m,1:n-1) = TRANSPOSE (b(2:n,1:m-1))

14.5 Matrix Multiplication

ADAPTOR will use a parallel implementation of the matrix multiplication for the array intrinsic function

MATMUL.

14.6 Shadow Edges

Many scienti�c application contain a lot of so-called stencil operations where for the update of one element

only values of the direct neighborhood is needed. Shadow edges (or overlap areas) that can contain these

values guarantee that for the corresponding array statements or parallel loops it is not necessary to create

temporary data. Instead of the movement of data to the temporary it is only necessary to update the

overlap area.

The following HPF example program shows the bene�t of shadow edges.

REAL F(N,N), DF(N,N)

!hpf$ distribute F (block,block)

!hpf$ align DF with F

...

DF (2:N,1:N-1) = F (2:N,2:N) + F (1:N-1,1:N-1)

! equivalent to

FORALL (J=1:N-1,I=2:N) DF(I,J) = F(I,J+1) + F(I-1,J)

The array assignment requires data movement. Though the data movement contains structured commu-

nication, a straight-forward translation would generate the following code:

REAL*4 F (1:N,1:N)

REAL*4 DF (1:N,1:N)

REAL*4, ALLOCATABLE :: TMP1 (:,:), TMP2 (:,:)

!hpf$ distribute F (block,block)

!hpf$ align with F(I,J) :: DF(I,J), TMP1(I,J), TMP2(I,J)

...

ALLOCATE (TMP1(1:N,1:N), TMP2(1:N,1:N)

TMP1(2:N,1:N-1) = F(2:N,2:N) ! movement

TMP2(2:N,1:N-1) = F(1:N-1,1:N-1) ! movement

DF(2:N,1:N-1) = TMP1(2:N,1:N-1)+TMP2(2:N,1:N-1) ! local

DEALLOCATE (TMP2, TMP1)
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This solution requires two temporary arrays. The two array movements imply some communication

between the neighbored processors. Nevertheless a lot of local data will be copied as most neighbored

data is on the processor itself. By utilizing shadow edges the following code will be generated:

REAL*4 F (1:N,1:N) ovlp (1:0,0:1)

REAL*4 DF (1:N,1:N)

!hpf$ distribute F (block,block)

!hpf$ align DF (I_1,I_2) with F(I_1,I_2)

OVERLAP Update F BY [0:0,0:1]

OVERLAP Update F BY [1:0,0:0]

DF(2:N,1:N-1) = F(2:N,2:N)+F(1:N-1,1:N-1) ! local

Though the updating of the shadow edeges area requires the same amount of communication as the

assignments to the temporaries, the bene�t is due to the fact that no copying of local data is required.

Furthermore, the need of memory for the overlap area is less than for the temporary arrays.

(a) global view (b) local view

Figure 13: Data partitioning with shadow edges

In contrary to the latest version overlap areas are detected automatically. Nevertheless, the user has still

the possibility to specify a certain size for the overlap area. The overlap area will not change the semantic

of any program but can increase the performance of a program dramatically.

REAL A(N,N), B(N,N)

!ADP$ OVERLAP B(1:1,1:1)

ADAPTOR will use overlap areas also for aligned arrays.

SUBROUTINE RESTR (NPC, NPF, FC, UF, FF)

INTEGER NPC, NPF

DOUBLE PRECISION FC (NPC, NPC), FF (NPF, NPF), UF (NPF, NPF)

CHPF$ distribute FF (block, block)

CHPF$ align UF (I,J) with FF (I,J)

CHPF$ align FC (I,J) with FF (2*I-1,2*J-1)

INTEGER NC

NC = NPC - 1

FC (2 : NC, 2 : NC) =

1 2 * (FF (3 : 2 * NC - 1 : 2, 3 : 2 * NC - 1 : 2) -

2 4.0D0 * UF (3 : 2 * NC - 1 : 2, 3 : 2 * NC - 1 : 2) +

3 UF (3 : 2 * NC - 1 : 2, 2 : 2 * NC - 2 : 2) +

4 UF (2 : 2 * NC - 2 : 2, 3 : 2 * NC - 1 : 2) +

5 UF (4 : 2 * NC : 2, 3 : 2 * NC - 1 : 2) +

6 UF (3 : 2 * NC - 1 : 2, 4 : 2 * NC : 2))

END
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15 Explicit and Implicit Redistributions

15.1 Explicit Redistributions

The following code contains two loop nests. In the �rst loop nest, every row can be computed indepen-

dently, In the second loop nest, every column can be computed independently.

REAL, DIMENSION (N,N) :: A, B

!hpf$ distribute (block,*) :: A, B

DO J = 2, N

FORALL (I=1:N)

& A(I,J) = A(I,J) - A(I,J-1) * B(I,J)

END DO

DO I = 2, N

FORALL (J=1:N)

& A(I,J) = A(I,J) - A(I-1,J) * B(I,J)

END DO

In the DO J loop, the FORALL statement is local and requires no communication. The DO I loop contains

also a FORALL statement, but it will be executed serially as it is related to a serial dimension.

If we transpose the arrays A and B before the DO I loop (see �gure 14, then this loop can be executed

exactly as the DO J loop.

P1

P2

P3

P4

P1 P2 P3 P4

(b) DISTRIBUTE A(*,BLOCK)(a) DISTRIBUTE A(BLOCK,*)

Figure 14: Redistribution of arrays

REAL, DIMENSION (N,N) :: A, B, A1, B1

!hpf$ distribute (block,*) :: A, B

!hpf$ distribute (*,block) :: A1, B1

...

DO J = 2, N

FORALL (I=1:N)

& A(I,J) = A(I,J) - A(I,J-1) * B(I,J)

END DO

A1 = A; B1 = B ! redistribution

DO I = 2, N

FORALL (J=1:N)

& A1(I,J) = A1(I,J) - A1(I-1,J) * B1(I,J)

END DO

A = A1; B = B1 ! redistribution

REAL, DIMENSION (N,N) :: A, B

...

!hpf$ REDISTRIBUTE (block,*) :: A, B

DO J = 2, N

FORALL (I=1:N)

& A(I,J) = A(I,J) - A(I,J-1) * B(I,J)

END DO

!hpf$ REDISTRIBUTE (*,block) :: A, B
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DO I = 2, N

FORALL (J=1:N)

& A(I,J) = A(I,J) - A(I-1,J) * B(I,J)

END DO

15.2 Redistributions in the Called Routine

With the exception of local routines, serial routines and pure procedures, every subprogram will check

the distributions of its dummy arguments and make some redistribution if it is necessary.

Attention: Also descriptive directives will be handled like prescriptive ones. Inherited distributions are

not supported.

As the subroutine is responsible for the redistribution, the user can take advantage of the INTENT attribute.

It can avoid the copy in or copy out of data in case of a redistribution.

15.3 Redistributions in the Calling Routines

In the following it will be explained in which situations it is useful, it might be useful and it is necessary

to have an interface block.

The most general rule is that any full array or any section of an array is just passed by a descriptor and

the called subroutine is responsible for a redistribution. The calling routine has not to do anything and

therefore no interface block is necessary.

call SUB (A(1:N,1:N), B)

The next general rule is that an interface block must be available if the subroutine will not apply redis-

tributions and cannot deal with the actual distribution. In the following cases a subroutine cannot apply

redistributions:

� A serial procedure is only called by a single processor (see also section 9.2). An interface block

must be available in any case.

� Local routines will not redistribute their dummy arguments (see also section 9.1). An interface

block must be available if it is called with any other distribution than the expected one.

The last rule is that an interface should be speci�ed if the calling routine should make the redistribution

for optimization issues. This may occur if

� the actual argument requires a temporary array in any case,

� or if the routine is called within a loop and the redistribution must be done during every iteration.

Note: About a redistribution within the called routine will be decided at runtime. If the interface block

is available in the calling routine, the redistribution will be decided at compile time. In some situations,

it can only be determined at runtime that no redistribution is necessary, e.g. on one processor the block

and cyclic distribution is the same. Then at least the local copying of data is not necessary.

16 Unstructured Communication

In contrary to the structured communication, there is also communication necessary to set up the com-

munication schedule. This communication is needed to ask for the needed data or to inform the processor

about data that will be sent.
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16.1 Gathering of Data

The following code shows a very convenient possibility of gathering data from a distributed array.

type B(n1,n2,...,nk)

type A(m1,...,mk)

logical MASK (m1,...,mk)

!hpf$ distribute A (...)

!hpf$ distribute B (...)

INTEGER P1(m1,...,mk), ..., Pn(m1,...,mk)

!hpf$ align (i1,...,ik) with A(i1,...,ik) :: P1, ..., Pn, MASK

....

FORALL (j1=low1:up1, ..., jk = lowk:upk, MASK(j1,...,jk))

& A(j1,j2,...,jk) = B(P1(j1,...,jk), ..., Pn(j1,...,jk))

ADAPTOR will generate rather e�cient parallel code if the following points are observed:

� P1, ..., Pn must be integer arrays, where n is the rank of the array B. The values of these arrays

must be legal index values for the corresponding index of B.

� A, P1, ..., Pn and MASK should have the same rank, the same shape and should be aligned with each

other.

� A and B should be of the same type, as implicit type conversion might decrease the e�ciency.

The indirect addressing of a distributed array requires complex runtime support. A communication

pattern must be computed to access the needed data. In a �rst step, every processor will ask the

other processors for the needed data. In the second step, the processors send the required values to the

corresponding processors. This functionality must be available in the runtime system and has usually a

very high overhead.

In case of a shared array this runtime support is not necessary. Especially the owner evaluation is no

longer necessary as all global addresses remain unchanged.

REAL A(N), B(M)

INTEGER IND(N)

!hpf$ distribute (block) :: A, B, IND

!ADP$ SHARED B

...

A = B(IND)

The arrays A and IND are aligned. Every processor will need some values of the array B. As this data is

shared, no communication has to be inserted by the compiler.

16.2 Scattering of Data

The following code shows a very convenient possibility of scattering data to a distributed array.

type B(n1,n2,...,nk)

type A(m1,...,mk)

logical MASK (m1,...,mk)

!hpf$ distribute A (...)

!hpf$ distribute B (...)

INTEGER P1(m1,...,mk), ..., Pn(m1,...,mk)

!hpf$ align (i1,...,ik) with B(i1,...,ik) :: P1, ..., Pn, MASK

....

FORALL (j1=low1:up1, ..., jk = lowk:upk, MASK(j1,...,jk))

& B(P1(j1,...,jk), ..., Pn(j1,...,jk)) = A(j1,j2,...,jk)

The HPF intrinsic functions should be used to scatter data from an array A to an array B:
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B = xxx_SCATTER (A, B, P1, ..., Pn, A, MASK)

The MASK parameter is optional. The allowed values for the reduction function are ALL, ANY, COUNT, IALL,

IANY, IPARITY, SUM, PRODUCT, PARITY, MINVAL and MAXVAL.

The following has to be observed:

� P1, ..., Pn must be integer arrays, where n is the rank of the array B. The values of these arrays

must be legal index values for the corresponding index of B

� A, P1, ..., Pn and MASK must have the same rank, the same shape and the same distribution.

� A and B must be of the same type, e.g. no implicit type conversion is done here.

If k is the rank of the arrays A, P1, ..., Pn and MASK, and (low1:up1,...,lowk:upk) the shape, the

semantic of the scatter operation can be described by the following loop nesting:

DO j1 = low1, up1

DO j2 = low2, up2

...

DO jk = lowk, upk

IF (MASK(j1,...,jk) THEN

B(P1(j1,...,jk), ..., Pn(j1,...,jk)) =

& red_f (B(P1(j1,...,jk), ..., Pn(j1,...,jk)), A(j1,...,jk))

END IF

END DO

...

END DO

END DO

16.3 Indirect Addressing

The direct use of indirect addressing is only supported for full arrays.

REAL a(n), b(m) ! arrays are all

INTEGER p(n) ! distributed by default

b(p) = a ! scatter operation

a = b(p) ! gather operation

It should be mentioned that in many situations indirect addressing can be translated to corresponding

calls of the scatter routines.

dimension Y(km), Z(km)

INTEGER INDEX(km)

...

Y(INDEX(1:LIMIT)) = Y(INDEX(1:LIMIT)) + Z(1:LIMIT)

This operation can be rewritten to a scatter operation.

dimension Y(km), Z(km)

INTEGER INDEX(km)

...

Y = SUM_SCATTER (Z(1:LIMIT), Y, INDEX(1:LIMIT), mask)

The following example demonstrates how to handle code with two steps of indirect addressing.

Attention: Indirect addressing within a FORALL statement is supported. But as indirect addressing might

involve a lot of communication it should be used carefully.
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16.4 The TRACE Directive

The requirement for tracing is described by the user directive !ADP$ TRACE. This directive has a Fortran

attribute semantics, and follows Fortran 90 rules of scoping. By default, arrays are not traced.

An array must be 
agged dirty when it is changed. The syntactic constructs that can modify an array

are limited, and can be analyzed at compile-time: assignments with this array as a left-hand-side, redis-

tributions, allocations and deallocations. Thus, the trace attribute is compatible with the DYNAMIC and

ALLOCATABLE attributes, but not with the POINTER or TARGET attribute, because the compiler will not be

able to record modi�cation of such arrays.

integer, dimension (N) :: P

!adp$ trace :: P

Communication schedules can be reused if indirection array has not changed. In the following example,

the communication schedule will be reused for the integer array P as it is traced and not modi�ed between

the di�erent calls of the subroutine TIMING.

subroutine INDIRECT

real, dimension (N) :: A, B

integer, diemension (N) :: P, Q

!hpf$ distribute (block) :: A

!hpf$ align with A :: B, P, Q

!adp$ trace P

call init(P)

call init(Q)

do J = 1, M ! serial loop

call timing (A, B, P)

end do

do J = 1, M ! serial loop

call timing (A, B, Q)

end do

end subroutine indirect

subroutine timing(A, B, L)

...

!adp$ trace L

forall (I=1:N) A(I) = B(L(I))

end subroutine timing

17 Extracting Communication

17.1 Temporary Arrays

Complex array statements and parallel loops might contain a lot of communication. The general strategy

is to extract the communication outside of the parallel loop to get local independent computations. For

this process, it might be necessary to introduce temporary arrays.

integer, parameter :: N=100, NA=200, NB=50

real, dimension (N) :: VAL

real, dimension (NA) :: A

real, dimension (NB) :: B

!hpf$ distribute (block) :: VAL, A, B

INTEGER IND1(N), IND2(N)

!hpf$ align(I) with VAL(I) :: IND1, IND2

FORALL (I=1:N) A(IND1(I)) = B(IND2(I)) + VAL(I) ! on home VAL(I)

The complex FORALL statement will be handled in the following way:
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REAL TMP1(N), TMP2(N)

!hpf$ align(I) with VAL(I) :: TMP1, TMP2

FORALL (I=1:N) TMP1(I) = B(IND2(I)) ! pre-fetch

FORALL (I=1:N) TMP2(I) = TMP1(I) + VAL(I) ! local

FORALL (I=1:N) A(IND(I)) = TMP2(I) ! post-store

Before the parallel loop, which itself is now a local one, the processors collect the data that will be needed

within the parallel loop. This is also called pre-fetching.

After the parallel loop, the processors will send the non-local computed data to the owner of the data.

This is also called post-store. Due to the owner-computes rule, in most situations this is not necessary.

But in case of indirect-addressing or more complex parallel loops, this kind of communication must be

generated.

17.2 Problems with Extracting Communication

Some situations can be identi�ed where it is not easy or not possible to extract the communication

completely outside of the parallel loop.

� In the following loop, communication might be necessary to have local copies of the values X(I+k):

TMP(1:N) = X(k+1:k+N)

!hpf$ INDEPENDENT !hpf$ INDEPENDENT, RESIDENT ON HOME Y(I)

DO I = 1, N DO I = 1, N

X(I) = ... X(I) = ...

Y(I) = f(X(I+k)) Y(I) = f(TMP(I))

END DO END DO

But extracting the communication as it is done here produces wrong code if the value of k is 0.

In this case, we have loop independent true dependences, as the needed value for X is computed

during the same iteration.

� Extracting the communication is not possible for a subroutine call as long as it is not known which
non-local data will be accessed within the subroutine.

!hpf$ INDEPENDENT

DO I = 1, N

X(I) = ...

CALL SUB (I, X(I), Y(I))

END DO

� Though the subroutine might be a PURE subroutine, it is possible to read values of global arrays
within the subroutine. If such an array is distributed, communication might be involved that cannot
be extracted.

PURE SUBROUTINE f (x1)

REAL x1

INTEGER p

p = g(x1)

x1 = x1 * a[p]

END

The extraction of communication is absolutely necessary as every processor must be involved who has to

send data or who has to receive data.

This problem does no longer exist, if one-sided communication is available. In this case, one processor can

access non-local data during the parallel execution. Only synchronization before and after the parallel

loop is necessary.
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Appendix: Fortran 90

This appendix gives a short summary of new features in Fortran 90. It was adopted in 1991 and is now

an ANSI and the ISO standard.

17.3 Syntax Improvements

� new declaration statements,

� the binary operations <>, /=, ==, <=, <, >, and >= instead of .ne., .eq., .le., .lt., .gt., and

.ge.,

� ending comments starting with !,

� semicolon ; for separating statements,

� using & for continuation lines,

� free source format.

17.4 Dynamic Arrays

Fortran 90 supports two kinds of dynamic arrays:

� Allocatable arrays - explicit allocation (by allocate statement) and deallocation (by deallocate state-

ment)

� Automatic arrays - automatic allocation (upon entry to the de�ning subprogram) and deallocation

(on return).

While the allocatable arrays use heap storage, automatic arrays can use stack storage.

17.4.1 Allocatable Arrays

An allocatable array is always local (it cannot be a dummy argument or be declared in common). It can

be allocated and deallocated only locally. This kind of array will be used if user input speci�es the size

of the arrays at runtime.

REAL, ALLOCATABLE :: a(:), b(:)

READ *, n

IF (n .GT. 0) THEN

ALLOCATE (a(n), b(n))

...

DEALLOCATE (b, a)

END IF

17.4.2 Automatic Arrays

An automatic array can appear only in a subprogram. It looks similar to a static array but the bounds

are speci�ed as dummy arguments or elements of a common block. In any case, an automatic array is

not a dummy array and not part of a common block.

SUBROUTINE s (n)

REAL a(n), b(n)

...

a(2:n) = b(1:n-1)
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17.5 Array Syntax

Array syntax allows to specify operations on full arrays or on sections of them.

real, dimension(1:100,1:100) :: A, B, C ! Declare Arrays

real, dimension(1:50) :: X, Y ! Declare vectors

A = 1.0 ! assign whole array

B = 2.0

C = A * B ! combine whole arrays

X = C(1,1:100:2) ! pick alternate elements from row 1

Y(1:50:-1) = X(1:50) ! reverse order of vector

The WHERE construct works as a masking operation for array statements. It can be used as a single

statement thus:

WHERE (A >= 0.0) A = SQRT (A)

or as a block WHERE construct such as

WHERE (mask)

A = SQRT (A)

ELSE WHERE

A = default

END WHERE

An array value can be formed with an array constructor (is always a one-dimensional array).

� an array constructor is '['index list']' (ADAPTOR supports '[' and ']' as well as '(/' and

'/)').

� an index can be a single element, a range speci�er or an implied do loop.

parameter (n=6)

real a(n)

...

A = (/(i=1,n)/)

A = [1:n]

A = [1,2,3,4,5,6]

A = (/ 2, 3, 4, (I, I = 13, 43, 5) /) ! not supported

A = [2, 3, 4, [13:43:5]] ! not supported

17.6 Array-valued Functions

With Fortran 90, functions can return full arrays instead of only scalar variables.

function iota (n)

integer n

integer iota (n)

iota = (/(i,i=1,n)/)

end

17.7 Assumed-Shaped Arrays

A dummy array is an assumed-shaped array if there are no declared bounds for it. The bounds will be

paased in a data descriptor for the array. Intrinsic functions are provided to query the bounds.

subroutine init (A)

real A(:,:)

do j = lbound(A,2), ubound(A,2)

do i = lbound(A,1), ubound(A,1)

A(i,j) = 1.0

end do

end do
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17.8 New Control Structures

The new control constructs of Fortran 90 can be used with ADAPTOR. They will be translated to

equivalent FORTRAN 77 constructs.

� The CASE construct,

� the EXIT statement,

� the CYCLE statement,

� and DO loops without loop control.

do

read *, number

print *, "input data: ", number

if (number < 0) then

exit

else if (mod(number, 2) == 0) then

cycle

else

number_of_odd_numbers = number_of_odd_numbers + 1

end if

end do

print *, "enter traffic_light color"

read *, traffic_light

select case(traffic_light)

case ("red")

print *, "stop"

case ("yellow")

print *, "caution"

case ("green")

print *, "go"

case default

print *, "illegal value:", traffic_light

end select

17.9 Parameterized Data Types

Portability of numerical code has long been di�cult, primarily due to di�erences in the word sizes of the

computers on which the code is run. Fortran 90 introduces parameterized types, increasing portability of

software from machine to machine. This is done using kind values, constants associated with an intrinsic

type such as integer or real. Parameterization of kind values allows precision changes by changing a

single constant in the program. Several intrinsic functions are provided to select kind values based on

the range and precision desired and inquire about a variable's precision characteristics in a portable way.

module Precision

integer, parameter :: Q = selected_real_kind( 10, 10 )

end module Precision

program Portable

real (kind=Q) :: a, b, c

...

end program Portable

The selected real kind function above selects the kind value corresponding to a real number with

at least 10 decimal digits of precision and a decimal exponent range of at least 10 in magnitude. The

selected int kind function is similar, and an expression such as selected int kind(10) selects the

kind value corresponding to a integer number with magnitude in the range (10�10; 1010).
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Function Description

digits(x) q for an integer argument, p for a real argument

epsilon(x) b1�p for a real argument

huge(x) Largest in the integer or real model

minexponent(x) Minimum value of e in the real model

maxexponent(x) Maximum value of e in the real model

precision(x) Decimal precision (real or complex)

radix(x) The base b of the integer or real model

range(x) Decimal exponent range (real, complex, or integer)

tiny(x) Smallest positive value in the real model

Table 2: Numeric Inquiry Functions

17.10 Numerical Inquiry and Manipulation Functions

Fortran 90 introduces several intrinsic functions to inquire about machine dependent characteristics of

an integer or real. For example, the inquiry function, huge, can be used to �nd the largest machine

representable number for an integer or real value. The integer model used by these inquiry functions is1

i = s

q�1X

k=0

dkr
k

where

i is the integer value

s is the sign (+1 or -1)

r is the radix (r > 1)

q is the number of digits (q > 0)

dkis the kth digit, 0 � dk < r.

The 
oating-point model used by the inquiry functions is

x = sbe
pX

k=1

fkb
�k

where

x is the real value

s is the sign (+1 or -1)

b is the base (b > 1)

e is the exponent

p is the number of mantissa digits (p > 1)

fk is the kth digit, 0 � fk < b, f1 = 0) fk = 0 8 k.

Table 2 lists intrinsic functions that inquire about the numerical environment. Table 3 lists intrinsic

functions that manipulate the numerical characteristics of variables in the real model. An important

feature of all of these intrinsic functions is that they are generic and may be used to obtain information

about any kind of integer or real supported by the Fortran 90 implementation.

ADAPTOR supports the numeric inquiry and the numeric manipulation functions. The use of the

numeric manipulation functions will require a Fortran 90 compiler on the target machine.

1Information on the integer and 
oating-point models, as well as the following tables is taken from chapter 13 of

[ABM+92].
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Function Description

exponent(x) Value of e in the real model

fraction(x) Fractional part in the real model

nearest(x) Nearest processor number in a given direction

rrspacing(x) Reciprocal of relative spacing near argument

set exponent(x) Set the value of e to a speci�ed value

spacing(x) Model absolute spacing near the argument

Table 3: Numeric Manipulation Functions

17.11 Interface Blocks

In FORTRAN 77 interfaces are always implicit. In Fortran 90 interfaces can be explicit:

� in the same compilation unit interfaces are explicit,

� the USE statement imports the interfaces of a module (see section 17.15) and makes them explicit,

� the interface can be made explicit by an INTERFACE block.

INTERFACE

SUBROUTINE SUB (A, B)

REAL A(:,:)

INTEGER, POINTER :: B

END

END INTERFACE

...

CALL SUB (X, Y) ! pass descriptor for X instead of pointer

Certain uses (such as POINTER dummies and assumed-shape array dummies, optional arguments) require

an explicit interface.

17.12 Optional Arguments

In Fortran 90 it is possible to indicate that certain arguments to a procedure are optional arguments in

the sense that they do not have to be present when the procedure is called. An optional argument must

be declared by the OPTIONAL attribute.

SUBROUTINE DOIT (M, N, S, D)

INTEGER N

REAL S, D

INTEGER, OPTIONAL :: M

...

END SUBROUTINE DOIT

In the example the argument M needs not to be available. The subroutine can be called with any of the

following statements:

call DOIT (0, 7000, 0.1, 100.0)

call DOIT (0, 7000, D=0.1, S=100.0)

call DOIT (N=7000, D=0.1, S=100.0)

call DOIT (D=0.1, S=100.0, N=7000)

call DOIT (M=0, N=7000, D=0.1, S=100.0)

The presence of an optional argument can be tested with the intrinsic inquiry function PRESENT.

Optional arguments can be used within ADAPTOR. It should be observed that for user functions explicit

interface blocks should be available if optional arguments are given.
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17.13 Derived Data Types

The user can de�ne new data types, created from a collection of intrinsic types. These are similar to the

concept of structures or records in other languages.

TYPE POINT

INTEGER :: X, Y

END TYPE

Objects of a derived data type can be de�ned in the following way:

TYPE(POINT) :: P1, P2

...

P1%X = 0.0; P1%Y = 0.0

P2 = P1;

By overloading existing operators it is possible to de�ne new operations on derived data types (see section

17.18).

17.14 Pointers

In Fortran 90 objects can have the POINTER attribute. No storage will be allocated for such an object.

The object can be pointer associated to an existing object or to an object that will be created with the

ALLOCATE statement.

REAL, POINTER :: P

REAL, TARGET :: X

...

P => X ! P is associated with X

P = 5.3

PRINT *, X ! will print the value 5.3

ALLOCATE (P) ! P is associated with a new real variable

...

DEALLOCATE (P) ! free memory to which P is associated

If a pointer is associated with an existing variable, this variable must have the TARGET attribute or must

be itself an associated pointer. A pointer can also be an alias to a row or column of an array.

REAL, TARGET, DIMENSION (N,N) :: A

REAL, POINTER, DIMENSION (:) :: P

....

P => A(3,:) ! P is an alias to the third row of A

P => A(:,5) ! P is an alias to the fifth column of A

The ASSOCIATED intrinsic function checks whether a pointer is associated with a particular target, or

with any target.

A component of a derived type can be a pointer. By this way, it is now possible to have dynamic data

structures in Fortran programs.

17.15 Modules

Common blocks in FORTRAN 77 were the only portable means of achieving global access of data through-

out a collection of subprograms. This is unsafe, error-prone, and encourages bad programming practices

in general. Fortran 90 provides a new program unit, a module, that replaces the common block and

also provides many other features that allow modularization and data hiding, key concepts in developing

large, maintainable numerical code.
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Modules consist of a set of declarations and module procedures that are grouped under a single global

name available for access in any other program unit via the use statement. Interfaces to the contained

module procedures are explicit and permit compile time type-checking in all program units that use the

module. Visibility of items in a module may be restricted by using the private attribute. The public

attribute is also available. Those identi�ers not declared private in a module implicitly have the public

attribute.

module TypicalModule

private SWAP ! Make swap visible only within this module.

contains

subroutine ORDER (X, Y) ! Public by default.

integer, intent( inout ) :: X, Y

if ( abs( x ) < abs( y ) ) call SWAP (x, y)

end subroutine order

subroutine SWAP (X, Y)

integer, intent( inout ) :: X, Y

integer TMP

TMP = X; X = Y; Y = TMP ! Swap X and Y.

end subroutine SWAP

end module TypicalModule

program UseTypicalModule

use TypicalModule

! Declare and initialize x and y.

integer :: x = 10, y = 20

print *, x, y

call ORDER ( x, y )

print *, x, y

end program UseTypicalModule

A module collects also all interfaces in one place. The USE statement imports also the interfaces.

17.16 Internal Procedures

In FORTRAN 77, all subprograms are external with the exception of statement functions. Internal

subprograms are now possible under Fortran 90 and achieve an e�ect similar to FORTRAN 77's statement

functions. They are visible only within the containing program and have an explicit interface, guarding

against type mismatches in calls to the subprogram. Internal subprograms must be separated from the

main program by the contains statement. An example illustrating an internal subprogram is given

below.

PROGRAM LAPLACE

IMPLICIT NONE

! global data

REAL, ALLOCATABLE :: F(:,:), DF(:,:)

INTEGER MAXX, MAXY

...

CALL ALLOC_DATA ()

CALL INIT ()

...
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CALL FREE_DATA ()

CONTAINS

SUBROUTINE ALLOC_DATA ()

READ *,MAXX, MAXY

ALLOCATE (F(MAXX,MAXY), DF(1:MAXX,MAXY))

END SUBROUTINE ALLOC_DATA

SUBROUTINE FREE_DATA ()

DEALLOCATE (DF, F)

END SUBROUTINE FREE_DATA

SUBROUTINE INIT ()

F = 2.

F(:,MAXY) = 1.

F(2:MAXX-1,2:MAXY-1) = 0

DF = 0

END SUBROUTINE INIT

END PROGRAM LAPLACE

When procedures are internal to a program, another procedure, or within a module, they are preceded

by a CONTAINS statement. The internal procedure must appear just before the last END statement of the

program, procedure, or module containing them.

17.17 Generic Procedures

INTERFACE swap ! generic name

SUBROUTINE swap_int (i, j) ! specific name

INTEGER i, j

END SUBROUTINE swap_int

SUBROUTINE swap_real (X, Y) ! specific name

REAL x, y

END SUBROUTINE swap_int

END INTERFACE

17.18 Overloading

Fortran 90 allows to overload existing operators. By this way, it is possible to extend the operations for

new de�ned types.

MODULE points

TYPE point

INTEGER :: x, y

END TYPE

INTERFACE OPERATOR (+)

MODULE PROCEDURE add_points

END INTERFACE

CONTAINS

TYPE (point) FUNCTION add_points (x, y)

TYPE (point) x, y

...

END FUNCTION add_points

...

END MODULE POINTS

SUBROUTINE s

USE points

TYPE (point) :: p1, p2, p3

...

p3 = p1 + p2

...

END SUBROUTINE s
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Appendix B: Fortran 95

This appendix gives a short summary of new features in Fortran 95 It was adopted in 1996 and is now

an ANSI and the ISO standard.

17.19 The FORALL Statement

The FORALL statement can be used for specifying an array assignment in terms of array elements or array

sections. It can be masked with a scalar logical expression. The parallelism of this assignment is given

by the fact that the assignment can be executed in any order.

The single assignments of a FORALL statement will be executed by the owner of the left hand side in the

assignment.

It is possible to use array statements within the FORALL loops.

REAL a(n,n), b(n,n), c(n)

!hpf$ distribute (block,block) :: a, b

!hpf$ distribute (block) :: c

...

FORALL (i=1:n) a(1:i,i) = b(1:i,i)

FORALL (i=2:n) c(i) = sum(c(1:i))

17.20 The FORALL Construct

The FORALL construct can contain nested FORALL statements, FORALL constructs and WHERE statements.

It can be used without any restrictions.

FORALL (I=1:8)

A(I,I) = SQRT (A(I,I))

FORALL (J=I-3:I+3, J/=I .AND. J>=1 .AND. J<=9)

A(I,J) = A(I,I) * A(J,J)

END FORALL

WHERE (A(I,:) .NE. 0.0)

A(I,:) = A(I-1,:) + A(I+1,:)

ELSEWHERE

B(I,:) = A(6-I,:)

END WHERE

END FORALL

In a FORALL construct all statements are executed completely in order of appearance.

17.21 PURE Procedures

A pure procedure is designed to guarantee that it is free from side e�ects (i.e., modi�cations of data visible

outside the procedure). Therefore it is safe to reference it in constructs such as a FORALL assignment

statement where there is no explicit order of evaluation.

Pure subprograms must have the keyword PURE.

PURE REAL FUNCTION f (x1, x2)

REAL x1, x2

f = (x1 - 1) * (x2 + 1)

END

PURE SUBROUTINE x (a, b, c)

REAL a, b, c

c = (a - 1) * (b + 1)

END

A pure procedure must not have any side e�ects. For this reason, a lot of syntactical restrictions are

given for pure routines.
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17.22 ELEMENTAL Procedures

Elemental procedures are designed to specify pure routines for scalar arguments that can later also be

called with array arguments.

Elemental subprograms must have the keyword ELEMENTAL. Every elemental procedure must also be pure,

but there are some more restrictions. Dummy procedures are not allowed, all dummy arguments and the

function result must be scalar and not have the POINTER attribute.

Appendix C: Intrinsics

A lot of Fortran intrinsic functions can be translated with ADAPTOR but still remain Fortran intrinsic

functions in the generated code. If they are FORTRAN 77 intrinsic functions they should be compiled

by every FORTRAN 77 compiler. But Fortran 90 intrinsic functions might require a Fortran 90 compiler

on the target system.

If an intrinsic function is available, it means that ADAPTOR translates it to corresponding FORTRAN 77

code with corresponding support in the runtime system. These functions can be used without any

restrictions.

If an intrinsic is noted as restricted, it means that the functionality is not full available, e.g. a parameter

value must be known at compile time or an optional parameter must not be available.

If an intrinsic is noted as not available, it means, that it cannot be used with ADAPTOR at all.

17.23 Numeric, mathematical, character, kind, logical and bit procedures

17.23.1 Numeric functions

The numeric functions are INT, REAL, DBLE, CMPLX, AIMAG, CONJG, AINT, ANINT, NINT, ABS, MOD, SIGN,

DIM, DPROD, MODULO, FLOOR, CEILING, MAX and MIN. They are all elemental functions.

All numeric intrinsic functions are supported. Attention has to be paid to those functions that are not

supported by the F77 compiler of the target machine.

Especially there might be problems with the functions AINT, ANINT, CMPLX, INT, NINT or REAL if the KIND

argument is available.

17.23.2 Mathematical functions

The elemental functions SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SINH, COSH and

TANH evaluate elementary mathematical functions.

They are all supported without any restrictions.

17.23.3 Character functions

The elemental functions ICHAR, CHAR, LGE, LGT, LLE, LLT, IACHAR, ACHAR are handled.

The elemental functions LEN TRIM, SCAN, ADJUSTL, ADJUSTR, and VERIFY, as well as the transformational

functions REPEAT and TRIM are not supported (do not belong to FORTRAN 77).
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17.23.4 Character inquiry functions

The inquiry function LEN is supported.

17.23.5 KIND functions

Kind parameters provide are way to parameterize the selection of di�erent possible machine represen-

tations for each of the intrinsic data types. This feature is now supported in ADAPTOR. This in-

cludes the inquiry function KIND as well as the transformational functions SELECTED REAL KIND and

SELECTED INT KIND.

17.23.6 LOGICAL function

The elemental function LOGICAL is not available.

17.23.7 Bit manipulation and inquiry procedures

Logical operations on bits are provided by the functions IOR, IAND, NOT and IEOR, shift operations are

given by the functions ISHFT and ISHFTC. Bit sub�elds may be referenced by the function IBITS and by

the subroutine MVBITS. Single-bit processing is provided by the functions BTEST, IBSET, and IBCLR.

All of these functions are checked by ADAPTOR, but their realization is passed to the compiler of the

generated code.

17.24 TRANSFER function

The function TRANSFER is not available.

17.25 Numeric manipulation and inquiry functions

All the corresponding numeric inquiry functions RADIX, DIGITS, MINEXPONENT, MAXEXPONENT, PRECISION,

RANGE, HUGE, TINY and EPSILON, and the 
oating point manipulation functions EXPONENT, SCALE, NEAREST,

FRACTION, SET EXPONENT, SPACING and RRSPACING cannot be used as long as the available Fortran com-

piler does not support these functions.

17.26 Intrinsic subroutines

17.26.1 Date and time subroutines

The timing routines of Fortran 90 are available to guarantee also a rather good portability of codes that

are timed. These routines are DATE AND TIME, SYSTEM CLOCK and CPU TIME.

DATA_AND_TIME ([DATE] [,TIME] [,ZONE], [,VALUES])

SYSTEM_CLOCK ([COUNT] [,COUNT_RATE] [,COUNT_MAX])

CPU_TIME (TIME)
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17.26.2 Pseudorandom numbers

The intrinsic subroutines RANDOM NUMBER and RANDOM SEED are supported by ADAPTOR and realized by

own library implementations.

RANDOM_NUMBER (harvey)

RANDOM_SEED ([SIZE][,PUT],[,GET])

17.27 Array intrinsic functions

17.27.1 Array inquiry functions

The functions LBOUND, UBOUND, SHAPE, SIZE are realized by ADAPTOR and own library functions.

The function ALLOCATED can be used, but the use of allocation is currently restricted (see section 17.4.1).

17.27.2 Vector and matrix multiply functions

The functions DOT PRODUCT and MATMUL can be used without any restrictions. For both routines parallel

code will be generated.

17.27.3 Array reduction functions

The functions ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT and SUM are supported by ADAPTOR. There

are e�cient realizations for these reductions in the context of distributed arrays.

17.27.4 Array construction functions

The functions MERGE and SPREAD are supported.

The functions PACK and UNPACK can be used but are not parallelized.

17.27.5 Array reshape function

The function RESHAPE can be used but is not parallelized so far.

17.27.6 Array manipulation functions

The array manipulation functions CSHIFT, EOSHIFT and TRANSPOSE are implemented, also rather e�-

ciently for distributed arrays.

17.27.7 Array location functions

The array location functions MINLOC and MAXLOC are available, but cannot be used with the DIM argument.

17.27.8 Pointer association status functions

The functions ASSOCIATED and NULL are not available as ADAPTOR does not support pointer at all.
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17.28 HPF Intrinsics and Libraries

The system inquiry functions NUMBER OF PROCESSORS is supported by ADAPTOR, but not

PROCESSORS SHAPE.

The mapping inquiry subroutines HPF ALIGNMENT, HPF TEMPLATE, and HPF DISTRIBUTION are now avail-

able in ADAPTOR as this tool now supports also inherited distributions.

The new reduction functions IALL, IANY, IPARITY and PARITY can be used with ADAPTOR.

With ADAPTOR, the array combining scatter functions XXX SCATTER are full supported and implemented

e�ciently.

Array pre�x and su�x functions XXX PREFIX and XXX SUFFIX are not supported by ADAPTOR. The

same is true for the bit manipulation functions ILEN, LEADZ, POPCNT and POPPAR as well as for the sorting

functions GRADE DOWN and GRADE UP.

Intrinsic Available Class Type

ABS F77 Elemental Numeric

ACHAR F90 Elemental Transfer

ACOS F77 Elemental Numeric

ADJUSTL F90 Elemental Character

ADJUSTR F90 Elemental Character

AIMAG F77 Elemental Transfer

AINT F77 Elemental Transfer

ALL Yes Transformational Array reduction

ALLOCATED No Inquiry Array inquiry

ANINT F77 Elemental Transfer

ANY Yes Transformational Array reduction

ASIN F77 Elemental Numeric

ASSOCIATED No Inquiry Pointer association

ATAN F77 Elemental Numeric

ATAN2 F77 Elemental Numeric

BIT SIZE F90 Inquiry Bit inquiry

BTEST F90 Elemental Bit computation

CEILING F90 Elemental Numeric

CHAR F90 Elemental Transfer

CMPLX F77 Elemental Transfer

CONJG F77 Elemental Transfer

COS F77 Elemental Numeric

COSH F77 Elemental Numeric

COUNT Yes Transformational Array reduction

CPU TIME Yes Subroutine Subroutine

CSHIFT Yes Transformational Array manipulation

DATE AND TIME Yes Subroutine Subroutine

DBLE F77 Elemental Transfer

Beside the existing intrinsic routines, the HPF standard describes some new intrinsic routines.
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Intrinsic Available Class Type

DIGITS F90 Inquiry Numeric inquiry

DIM F77 Elemental Numeric

DOT PRODUCT Yes Transformational Vector multiplication

DPROD F90 Elemental Numeric

EOSHIFT Yes Transformational Array manipulation

EPSILON F90 Inquiry Numeric inquiry

EXP F77 Elemental Numeric

EXPONENT F90 Elemental Floating point man.

FLOOR F90 Elemental Numeric

FRACTION F90 Elemental Floating point man.

HUGE F90 Inquiry Numeric inquiry

IACHAR F90 Elemental Transfer

IAND Mil. Std. Elemental Bit computation

IBCLR Mil. Std. Elemental Bit computation

IBITS F90 Elemental Transfer

IBSET Mil. Std. Elemental Bit computation

ICHAR F90 Elemental Transfer

IEOR Mil. Std. Elemental Bit computation

INDEX F90 Elemental Character

INT F90 Elemental Transfer

IOR Mil. Std. Elemental Bit computation

ISHFT Mil. Std. Elemental Bit computation

ISHFTC Mil. Std. Elemental Bit computation

KIND Yes Inquiry Kind

LBOUND Yes Inquiry Array inquiry

LEN F90 Inquiry Char inquiry

LEN TRIM F90 Elemental Character

LGE F77 Elemental Character

LGT F77 Elemental Character

LLE F77 Elemental Character

LLT F77 Elemental Character

LOG F77 Elemental Numeric

LOG10 F77 Elemental Numeric

LOGICAL F90 Elemental Transfer

MATMUL Yes Transformational Array multiplication

MAX F77 Elemental Numeric

MAXEXPONENT F90 Inquiry Numeric inquiry

MAXLOC restricted Transformational Array location

MAXVAL Yes Transformational Array reduction

MERGE Yes Elemental Array construction

MIN F77 Elemental Numeric

MINEXPONENT F90 Inquiry Numeric inquiry
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Intrinsic Available Class Type

MINLOC Restricted Transformational Array location

MINVAL Yes Transformational Array reduction

MOD F77 Elemental Numeric

MODULO F90 Elemental Numeric

MVBITS F90 Subroutine Subroutine

NEAREST F90 Elemental Floating point man.

NINT F77 Elemental Transfer

NOT Mil. Std. Elemental Bit Computation

NULL No Transformational Pointer association

PACK serial Transformational Construction

PRECISION F90 Inquiry Numeric inquiry

PRESENT Yes Inquiry Argument

PRODUCT Yes Transformational Array reduction

RADIX F90 Inquiry Numeric inquiry

RANDOM NUMBER Yes Subroutine Subroutine

RANDOM SEED Yes Subroutine Subroutine

RANGE F90 Inquiry Numeric inquiry

REAL F77 Elemental Transfer

REPEAT F90 Transformational Character

RESHAPE serial Transformational Array reshape

RRSPACING F90 Elemental Floating point man.

SCALE F90 Elemental Floating point man.

SCAN F90 Elemental Character

SELECTED INT KIND Yes Transformational Kind

SELECTED REAL KIND Yes Transformational Kind

SET EXPONENT F90 Elemental Floating point man.

SHAPE Yes Inquiry Array inquiry

SIGN F77 Elemental Numeric

SIN F77 Elemental Numeric

SINH F77 Elemental Numeric

SIZE Yes Inquiry Array inquiry

SPACING F90 Elemental Floating point man.

SPREAD Yes Transformational Array construction

SQRT F77 Elemental Numeric

SUM Yes Transformational Array reduction

SYSTEM CLOCK Yes Subroutine Subroutine

TAN F77 Elemental Numeric

TANH F77 Elemental Numeric

TINY F90 Inquiry Numeric inquiry

TRANSFER F90 Transformational Transfer

TRANSPOSE Yes Transformational Array manipulation

TRIM F90 Transformational Character

UBOUND Yes Inquiry Array inquiry

UNPACK serial Transformational Array construction

VERIFY F90 Elemental Character
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Intrinsic Available Class

ILEN No Elemental

NUMBER OF PROCESSORS Yes System inquiry function

PROCESSORS SHAPE Yes System inquiry function

ACTIVE NUM PROCS Yes System inquiry function

ACTIVE PROCS SHAPE Yes System inquiry function

TRANSPOSE No Transformational

Table 4: HPF Intrinsic Procedures.

Routine Available Class

ALL PREFIX No Transformational

ALL SCATTER Yes Transformational

ALL SUFFIX No Transformational

COPY PREFIX No Transformational

COPY SCATTER Yes Transformational

COPY SUFFIX No Transformational

COUNT PREFIX No Transformational

COUNT SCATTER Yes Transformational

COUNT SUFFIX No Transformational

ANY PREFIX No Transformational

ANY SCATTER Yes Transformational

ANY SUFFIX No Transformational

GRADE DOWN No Transformational

GRADE UP No Transformational

HPF ALIGNMENT Yes Mapping inquiry subroutine

HPF DISTRIBUTION Yes Mapping inquiry subroutine

HPF TEMPLATE Yes Mapping inquiry subroutine

IALL Yes Transformational

IALL PREFIX No Transformational

IALL SCATTER Yes Transformational

IALL SUFFIX No Transformational

IANY Yes Transformational

IALL PREFIX No Transformational

IALL SCATTER Yes Transformational

IALL SUFFIX No Transformational

IPARITY Yes Transformational

IPARITY PREFIX No Transformational

IPARITY SCATTER Yes Transformational

IPARITY SUFFIX No Transformational

LEADZ No Transformational

MAXVAL PREFIX No Transformational

MAXVAL SCATTER Yes Transformational

MAXVAL SUFFIX No Transformational

MINVAL PREFIX No Transformational

MINVAL SCATTER Yes Transformational

MINVAL SUFFIX No Transformational

Table 5: Routines of HPF LIBRARY.
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Routine Available Class

PARITY Yes Transformational

PARITY PREFIX No Transformational

PARITY SCATTER Yes Transformational

PARITY SUFFIX No Transformational

POPCNT No Elemental function

POPPAR No Elemental function

PRODUCT PREFIX No Transformational

PRODUCT SCATTER Yes Transformational

PRODUCT SUFFIX No Transformational

SORT DOWN No Transformational

SORT UP No Transformational

SUM PREFIX No Transformational

SUM SCATTER Yes Transformational

SUM SUFFIX No Transformational

Table 6: Routines of HPF LIBRARY (contd.).

Routine Available Class

GLOBAL ALIGNMENT Yes Inquiry

GLOBAL DISTRIBUTION Yes Inquiry

GLOBAL TEMPLATE Yes Inquiry

GLOBAL SHAPE Yes Inquiry function

GLOBAL SIZE Yes Inquiry function

ABSTRACT TO PHYSICAL No Subroutine

PHYSICAL TO ABSTRACT No Subroutine

LOCAL TO GLOBAL No Subroutine

GLOBAL TO LOCAL No Subroutine

MY PROCESSOR Yes Pure function

LOCAL BLKCNT No Pure function

LOCAL LINDEX No Pure function

LOCAL UINDEX No Pure function

Table 7: Routines of HPF LOCAL LIBRARY

Routine Available Class

F77 GLOBAL ALIGNMENT Yes Inquiry

F77 GLOBAL DISTRIBUTION Yes Inquiry

F77 GLOBAL TEMPLATE Yes Inquiry

F77 GLOBAL SHAPE Yes Inquiry function

F77 GLOBAL SIZE Yes Inquiry function

F77 ABSTRACT TO PHYSICAL No Subroutine

F77 PHYSICAL TO ABSTRACT No Subroutine

F77 LOCAL TO GLOBAL No Subroutine

F77 GLOBAL TO LOCAL No Subroutine

F77 MY PROCESSOR Yes Pure function

F77 LOCAL BLKCNT No Pure function

F77 LOCAL LINDEX No Pure function

F77 LOCAL UINDEX No Pure function

Table 8: F77 callable routine of Local Library.
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Routine Available Class

HPF TASK INIT Yes Subroutine

HPF TASK EXIT Yes Subroutine

HPF TASK RANK Yes Subroutine

HPF TASK SIZE Yes Subroutine

HPF SEND Yes Subroutine

HPF RECV Yes Subroutine

HPF SEND INIT Yes Subroutine

HPF RECV INIT Yes Subroutine

HPF TASK COMM Yes Subroutine

Table 9: Routines of HPF TASK LIBRARY.
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