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MAGNETISM OF STRONGLY-CORRELATED ELECTRONS

Lectures given at Aoyama Gakuin University, Tokyo, Oct. 2000, by

Thomas A. Kaplan

Physics-Astronomy Department and Center for Fundamental Materials Research
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.


I expect to give 6 lectures over the next two weeks. Most will be on the Hubbard model, with associated t-J and Heisenberg models; I hope I can discuss the Double Exchange model, at least briefly. Much of the material is from the Ph.D. thesis of Nilton P. Silva, Michigan State University, 1975. See also N. P. Silva and T. A. Kaplan, AIP Proceedings No. 18, Magnetism and Magnetic Materials – 1973.


First, what do we mean by "strongly-correlated electrons"? To know, we need to understand the idea of correlations, or correlation effects. The intuitive, qualitative idea of particles being correlated, usually refers to the idea that because of the Coulomb repulsion, electrons would tend to stay apart from each other, the more so if the kinetic energy is small. People try to make this idea mathematically precise by defining correlation effects as those beyond the Hartree-Fock approximation. However there is some source of ambiguity that occurs in the definition of the HFA. Common to all HFA's is that the approximate ground state wave function is taken as a single Slater determinant (antisymmetrized product of 1-particle states). Some define the HFA as the so-called Restricted HFA: here each 1-particle state is a product of a spatial and a spin function, and the spatial function is either occupied by a spin-up and a spin-down electron ("doubly-occupied" or "spin-paired"), or only a spin-up electron.  Then, correlation effects are defined as the difference in physical properties between those calculated from the exact wave function and from the RHFA. But others have used the so-called unrestricted HFA as the reference point. In the UHFA, one can have different spatial functions for up and down electrons, or, more generally, the 1-electron states need not factor into space-spin products. Nevertheless I think most use the RHFA in this connection of defining "correlation".


The question is relevant, because it turns out that the UHF can give a fairly good picture of the magnetic aspects of the ground state in cases where most agree that the electrons are "strongly correlated" (e.g. in antiferromagnetic insulators like MnO, La2CuO4). And, of course, this statement appears almost self-contradictory if we use the UHF as the reference point! In fact, a referee recently criticized a manuscript of ours for treating a material thought to be one with strongly "correlated" electrons within the HFA; he missed the point that we were doing UHFA (and we actually went beyond the HFA).


To discuss this a bit further, I'd like to consider 2 examples related to the hydrogen molecule. We consider a common model where the orbitals are in the space of the two hydrogen 1s orbitals u1(r) and u2(r), localized near proton 1 and 2 respectively (tight binding picture). It is convenient to consider the bonding and antibonding states


(b = Cb (u1 + u2),


(a = Ca (u1 - u2),

as suggested by symmetry. (These are usually called molecular orbitals.) The C's are normalization constants. The full 1-electron states are these multiplied by a spin function, "up" or "down". We now construct some 2-electron wave functions, which must be antisymmetric in the interchange of the electrons. We consider single Slater determinants. For both spins up define

|1> = (1/(2)A (b(r1) ((s1) (a(r2) ((s2) =(1/(2) [(b(r1)(a(r2) - (b(r2)(a(r1)] ((s1) ((s2),

a triplet state. A is the antisymmetrizer. For one spin up, the other down, consider

|2> = A(1(r1) ((s1) (2(r2) ((s2),

where (1,2 = a1,2(b + b1,2 (a (each is an arbitrary 1-electron state in our spatial function space). For the special case 

b1 = b2 = 0, |2> becomes

|2>o = (1/(2)A(b(r1) ((s1) (b(r2) ((s2) = (1/(2) (b(r1) (b(r2) [((s1) ((s2) - ((s2) ((s1)],

a singlet. You will recognize |1> and |2>o as being determinants which would be used in the RHFA. Whereas |2> for the general case (1 ( (2, would fall into the UHFA type.


Writing out the space parts of |1> and |2>o, we get (abbreviating r1 as 1, etc.)

(b(1)(a(2) - (b(2)(a(1) = -2CaCb [u1(1) u2(2) - u1(2) u2(1)]

(b(1) (b(2) = Cb2 [u1(1) u2(2) + u1(2) u2(1) + u 1(1) u1(2) + u 2(2) u2(1)]

A crucial difference between these is that in the triplet (both spins up) when 1 electron is in u1 the other is in u2, whereas in the singlet |2>o there is an equal contribution where both electrons are in u1 or in u2. This is essentially an illustration of the commonly heard statement, "electrons of parallel spin avoid each other, while those of antiparallel spin don't". This is true in RHFA, and the electrons are said to be uncorrelated in |2>o. But we could take e.g., (1 = u1 and (2 = u2 in |2>, in which case we have a wave function where "antiparallel" spins do avoid each other. This is an example of a determinant appropriate to UHFA.


The importance of the lack of correlation in the RHFA singlet is, from the above discussion, most important when the atoms are widely separated, for then the difference between u1 and u2 is large. As you will see, this simple example is closely related to our later discussions.


The title of Hubbard's historical paper where the Hubbard model originated is "Electron Correlations in Narrow Energy Bands". This is commonly called Hubbard I (J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963). And he gives considerable qualitative discussion that involves correlation effects. While he doesn’t explicitly define the term,  fortunately one can tell from the context what he means, and that is one of the definitions I mentioned earlier:  the difference measured from the restricted HFA, as manifested in simple band theory, where Bloch functions are always either spin paired, or in the case of ferromagnets, some Bloch functions only have spin up. My simple H2 example is very close in spirit to that, (bonding corresponds to wave vector k=0, antibonding to k = () and hopefully it will help you understand his nice qualitative discussion.

Fortunately, we can understand much about the Hubbard model, without a precise reconciliation of the ambiguities in definition of correlation that I raised.  The essential idea of "strong electron correlations" has to do with the narrowness of the active energy bands compared with Coulomb interactions, as we shall see.  

I.
The Hubbard Model


A common approach to dealing with this is to write it down, recognize that it is the simplest model that can describe simple band-like itinerant electron behavior in one limit, atomic-like or localized-electron behavior in another limit, and study its consequences.  But it was written down independently by others: des Cloiseaux did this in a paper dated 1959 (and applied various approximations to it), 4 years earlier than Hubbard, and Gutzwiller also wrote it down, studied it and published it in 1963, the same year as Hubbard's paper. Also, Kubo-sensei reminded me that others also wrote it down and studied it even before des Cloizeaux, e.g. J. Slater. So why is it called the Hubbard model? I believe it is because Hubbard gave a detailed "derivation". I will shortly show you this derivation, and point out that it leads to very poor behavior; i.e. it is unsatisfactory.  I'll mention an alternate approach that overcomes the failure.


An amazing aspect of the Hubbard model is that despite its simplicity, and controversial nature over the decades, it still remains of great interest today. For example it is the basis of P. W. Anderson's theory of high-temperature superconductivity. See his book, The Theory of Superconductivity in the High-Tc Cuprates, Princeton University Press, (1997); also a recent preprint arXiv:cond-mat/0007185 11 Jul 2000. So some knowledge of it is a must for advanced students.


Just so you get an idea of what we are looking for, let's write down the Hubbard model without explanation:



[image: image1.wmf].

ci(+ and ci(  are creation and destruction operators for electrons at site i with spin (; Tij (which is large only for  i and j near to each other) and U are numbers. We'll of course discuss this further. 

Hubbard's derivation; its failure for insulators


Hubbard's motivation lies in the ferromagnetism of transition metals, Fe, Ni, etc. This involves recognition that the active electrons are 3d and 4s.  Band calculations showed a relatively narrow d-band overlapped by a broad s-band with the Fermi energy lying in the d-band. Nevertheless, in the interest of simplicity, he focuses on the d-band alone (arguing later that the highly mobile s-electrons would not qualitatively affect things).  To simplify even further, he replaces the d-band (with its 5 spatial orbitals per atom) by an s-band (with its single orbital per atom). Thus he finally focuses on a model appropriate to a lattice of widely separated H atoms (or e.g. Li, etc.). This s-band or 1-band model has actually been applied over the decades up to present times to magnetic insulators as well as high-T superconductors such as La2-xSrxCuO4, YBa2Cu3O6+x (x=0 are insulators).


The derivation I will present now is not exactly Hubbard's, but the spirit is very similar, and formally it will be seen to be identical in the end.


The dominant electronic Hamiltonian for condensed matter physics is


[image: image2.wmf],






(6.1)

where 


[image: image3.wmf].  





(6.2)

That is, we have a system of electrons moving with momenta pi in the electrostatic field of nuclei fixed at positions 
[image: image4.wmf] with charge Zne, and interacting with each other. 


The expression above is sometimes referred to as the first-quantization form. For the second-quantization form suppose that 
[image: image5.wmf] constitute a complete set of orthonormal 1-electron states, and that ai+, ai are the fermion creation and destruction operators corresponding to (i. Then the above Hamiltonian can be written


[image: image6.wmf],





(6.3)

where, with h the operator (6.2), and 
[image: image7.wmf]
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(6.4)


[image: image9.wmf] (6.5)
To be specific, let's consider a s.c. lattice of N hydrogen atoms, with the protons held in place by some external forces, with a large lattice parameter a.  For infinite separation, a((, we know that many of the energy levels and wave functions would be simply related to those of 1 H-atom. For example, the lowest energy level would be at 
-N Ryd.; the corresponding wave function would involve a product of hydrogen 1s orbitals ui(r), each times a spin function, all antisymmetrized. We can write this down:


[image: image10.wmf]





(7.1)

ui(r) = u(r-Ri) belongs to the ith proton. Thus you see a degeneracy of this lowest level of 2N.  There would also be similar states where the 1s function at some site is replaced by the 2s function at the same site, with hydrogenic excitation energy (3/4 Ryd.), and so on. A complication is that in addition to these intra-atomic excitations, there would also be excited states where an electron leaves ui(r) and moves to another site, j, forming an H- ion. The energy cost for this is also about a Ryd. And above these there'll be continuum states.  

Now imagine "bringing a back from infinity", to a very large value. We expect  that the degeneracies will be removed. Clearly the lowest-lying states, which is what we're interested in, will evolve from those in (7.1). We argue that, in agreement with Hubbard, for such large a, we can consider for these purposes a 1-band model, defined as follows. We take as a "complete" set of 1-electron states, the ui(r)((. We would like to write this model in 2nd-quantized notation, so it is useful to have a set of orthonormal 1-electron states, whereas the ui are not orthogonal. Write the overlap matrix
 <ui|uj> ( Sij = S(Ri-Rj) 








(7.2)

Take Sii = 1 (ui normalized); for a large, of course Sij is small for i ( j (exponentially small in a). Still, we need to construct an orthonormal set; and this can be done as a linear combination of the ui, in fact, in an infinite number of ways. A particularly useful definition is the set of localized or atomic-like functions wi(r) = w(r-Ri) such that w(r) (u(r) as a((, w(r) is real, and is invariant under the symmetry operations of the lattice about R = 0. And, of course, we require <wi|wj> = (ij. Such functions are called Wannier functions by many workers, although they differ from Wannier's original definition. 

A convenient way of writing them explicitly is in terms of the 1-electron Bloch functions of our 1-band model, namely



[image: image11.wmf],





(8.1)

where 
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(8.2)

The bk(r) are often called "tight-binding" Bloch functions. We will consider periodic boundary conditions, so the wave vectors k take on their usual discrete values in a Brillouin zone. You can show that ​bk(r) is normalized and obeys the fundamental Bloch function property


bk(r+Rp) = 
[image: image13.wmf];







(8.3)

you can also show the orthogonality of the bk using the 1st of the important relations


N - 1
[image: image14.wmf].

k in 1st BZ




(8.4a)
N - 1
[image: image15.wmf].
Rj in “crystal”



(8.4b)

The sum on k goes over a Brillouin zone (BZ), the sum j over the “crystal”, as for all the sums in these notes. Then the Wannier function is



[image: image16.wmf].







(9.1)

You can easily show that w(r) ( u(r) as a(( (then S (R) (0 for R ≠ 0), and w(r) is real. Try to show the invariance property. Two other important properties are: 

 (i) wn(r) wm(r) ( 0 exponentially as a ( ( for n and m (( n) in the crystal (as opposed to the periodic repeats)

(ii) for the infinite crystal (​N ( (), w(r) vanishes exponentially as r (( for large enough a (small enough overlap S (R), R ≠ 0).

To see this expand [g(k)]-1/2 for small overlap and note that u(r) vanishes exponentially as r ((. 

Using the Bloch function property (8.3), (9.1) gives
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(9.2)

which can be inverted to give



[image: image18.wmf].





(9.3)


We can now write down our (or Hubbard's) general 1-band or single-band model in terms of the creation operators c​i(+ for the 1-electron states wi(r)((

[image: image19.wmf].




(9.4)

I've carried out the spin sums in the matrix elements, taking advantage of the spin-independence of the operators h and v = e2/r12. We could equally well write the same  operator in terms of Bloch-function creation and destruction operators 
[image: image20.wmf], 
[image: image21.wmf]:


[image: image22.wmf].



(10.1)

Please excuse the use and non-use of arrows indicating vectors (in preparing these notes I first did it one way then decided it was easier the other way, ending with mixed notation). Here hk = <k| h| k>, where | k > is the Bloch function. You should show, or at least realize, that hkk' ​ vanishes for k ( k' because h is periodic. 


Given H1b, there are several directions one can go. Because we are interested in the case of large a, many of the matrix elements are small, and one can actually treat this Hamiltonian directly for certain studies. But it is rather complicated, as you see, namely in the interaction terms. Hubbard chose to simplify it, and that has had appreciable advantages in enabling various insights to be gained. I'll mention an aspect of a complete treatment later. Now let's follow Hubbard. 


You may note that the 1-body terms (hij …) look the same as in the Hubbard model, whereas the interaction terms look quite different. As we shall see, those interaction terms for which i=j=n=m (the "on-site" terms) yield the Hubbard interaction term. So we could "get" the Hubbard Hamiltonian by simply throwing away all the other terms and putting hij = Tij. . But that would be quite unphysical because h is the Hamiltonian for one electron moving in the field of all the nuclei, all positively charged. Thus it neglects the important screening effect of all the other electrons, which arise from the interaction terms. Instead, Hubbard approximates the interaction terms other than the on-site terms by the restricted Hartree-Fock approximation (RHFA). 


Recall the general HF equations:


[image: image23.wmf]
(11.1),

where the occupation numbers 
[image: image24.wmf]( =1 or 0 if state ( is occupied or unoccupied, and 
[image: image25.wmf] means integral d3r2 and sum over s2. The first and second terms in the square brackets are called the Coulomb and exchange terms, respectively. Thus the HF, or 1-electron, eigenvalues are (taking the 1-electron states (( to be orthonormal)


[image: image26.wmf].

(11.2)


We want to replace the (( in (11.2) by our Bloch functions, spin-paired. That is,

taking Ne even, put

 
[image: image27.wmf], (( = ( and (( = (;

The spin-pairing condition: if 
[image: image28.wmf]k( = 1 then 
[image: image29.wmf]k( = 1 and if 
[image: image30.wmf]k( = 0 then 
[image: image31.wmf]k( = 0. So 
[image: image32.wmf]k( = 
[image: image33.wmf]k, independent of (.  Then (11.2) gives
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(11.3)

 Using (11.3), (9.4) can be written


[image: image35.wmf]
(11.4)

According to Hubbard, the first term represents the ordinary band energies of the electrons (which does include some average interaction effects within the HFA).  The second term represents their interactions, and the last term avoids counting the interactions of the electrons twice. 


Rewriting (11.4) in terms of the Wannier function operators, we obtain


[image: image36.wmf],
(12.1)

where, with 
[image: image37.wmf],
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(12.2)

[image: image39.wmf]






(12.3)

(so njj = 1/2 for the half-filled band, i.e. for 1 electron per site).


Now Hubbard argues that for our case of main interest, where the atomic sites are far apart, the Coulomb integrals vijkl when none of the subscripts (sites) are the same will be much smaller than when they are all the same. So he says let's neglect all except the "on-site" term, viiii ( U. (He gives some further justification later.) Then the last term becomes UNe2/2N, where Ne is the number of electrons. This term, being a constant, may be dropped. The remaining interaction term is, with ni( = ci(+ ci(,



[image: image40.wmf].

Thus we finally obtain the Hubbard Hamiltonian, according to Hubbard's derivation


[image: image41.wmf].






(12.4)

[image: image42.jpg]INSERT

After the last lecture, Kubo-sensel got two students to ask a
question! (Mr. Watanabe and Mr. Sugimora). And their question was &
g00d one, “Why am 1 doing what I'm doing?” Le., “what’s so important
about the Hubbard model?” If you remember, I ried to motivate this in
several ways, all in the context that you were familiar with solid state
physics, at least superficially. I referred o P. W. Anderson’s theory of
high-temperature superconductivity being very recent, assuming this active
Nobel prize winner would be familiar to you. But perhaps you never heard
of him! 1 also taiked about the Hubbard model being the simplest model
that can describe simple band-like itinerant-electron behavier in one limit,
and atomic-like or localized-electron behavior in another fimit. But pethaps
you didn’t realize the significance of this. Let me expand slighly.

It tums out that some materials, ¢.¢. metals Na, AL, semiconductors
Si, Ga As, ean be described rather well by with band theory, treating
electron-electron interactions in just some average way, so that one has
effectively an independent-electron or I-clectron model. But there are
‘materials, .g., insulators MnO, La CuO, where such & 1-electron theory
fails completely. Here the simple band theory definitely predicts these
insulators 0 be metals. Also, these types of materials show magnetic
‘behavior where the electrons behave s if they were localized on the Mn or
Cu ions. Actually the same would be true for our hypothetical Helattice,
The error in band theory was traced, first by Sir Neville Mot to the
essential role played by electron-clectron interactions, and their resulting
strong correlation effects. Such materials are called Moit insulators (see,
e.g. €. Kittel, Introduction to Solid State Physics). So, we conclude that
the problem of materials with strong electron-cleciron interactions is
worthy of study. But in such a case, the problem becomes extremely
difficult—it is & many-body problem, and in a solid “many” is very big
(10 ). Therefore the simplest models that eapture some of the important
‘physics are of great interest. And 5o we're led to the Hubbard model. Also,
before 1 am finished, I intend t show you some applications o real
materials,





Let's now examine the behavior of the "hopping" amplitude TijHF. I'll do this for a very simple case, namely two sites with two electrons (like the hydrogen molecule). (12.2) and (11.3) give


[image: image43.wmf]
      ( Tijh + TijCX.








(13.1)

Here the k​-values are 0 and (/a, a being the internuclear distance. With the help of (9.3) and (8.4b), we have (for general N)


[image: image44.wmf].

(13.2)

I used the fact that h​nm = h(Rn-Rm).  As is the usual case, assume it is the bonding orbital (k = 0) that is occupied; i.e. 
[image: image45.wmf]k = 1 for k = 0, 
[image: image46.wmf]k = 0, for k = (. Then, with the distance between the sites R = a, 



[image: image47.wmf]



(13.3)

Here we abbreviated 
[image: image48.wmf]= <k1k2|k3k4>. I find
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[image: image51.wmf]
I used v1112=v1121 =v1211=v2111, and v1122=v1221=v1221=v2112.  Substituting these into (13.3) yields


[image: image52.wmf].







(14.1)

Now I want to consider the behavior when the separation a is large. h12, v1112 and v1122 approach zero exponentially as a (( because of property (i) stated above. But v1212 approaches zero much more slowly, namely as 1/a, and this will dominate the large a behavior. Thus we conclude that

TijHF = O(a-1) as a((.







(14.2)

This is not expected intuitively, and in fact it is incorrect for the model it is supposed to be approximating, namely the 1-band model (9.4). Let's see this.


That model for 2 sites is


[image: image53.wmf]
Here,

U=v1111, v12=v1212, v'12=v1112, x12=v1221;


[image: image54.wmf], 
[image: image55.wmf], 
[image: image56.wmf]
This can be solved exactly.  One sets up the matrix of H1b in a complete set of states for the 2-electron problem, the dimensionality of which is just 6: There are 3 triplet states,

one of which is c1(+c2(+ |0> (|0> is the vacuum), and there are 3 singlets: 
|1) = 2-1/2(c1(+c2(+ - c1(+c2(+ )|0>, |+) = 2-1/2(c1(+c1(+ ( c2(+ c2(+)|0>.  With this choice of singlets the 3x3 matrix reduces to a 1x1 and a 2x2. In the limit a ((, the triplet and the singlet |1) are degenerate. The energies of the lowest singlet and triplet are 

[image: image57.wmf]
Etriplet  = v12 - x12.

Expanding the square root in powers of the small quantity h12+v'12 gives


[image: image58.wmf].





(I restored the original symbols.) You see that approaches zero exponentially, as I said. 


This argument showing Hubbard's derivation leads to a seriously poor result can be extended from this 2-site case to general N = Ne , with a similar conclusion. It involves carrying out via perturbation theory the determination of the low-lying states for large a directly using the Hamiltonian H1b. (Unpublished lecture notes for a course in Magnetism given at Michigan State University in 1971 and 1972, by T. A. Kaplan.) For the case of 1 electron per site, it turns out that these states are governed by the Heisenberg Hamiltonian 


[image: image59.wmf]
with 



[image: image60.wmf],

where



[image: image61.wmf]
Compare with the 2-site result. Again one can see that this approaches zero exponentially for large a. Also note that the reality of the wi implies tij = tij* = tji.
It is interesting to note that if Hubbard had neglected the interatomic part of the Coulomb interactions (rather than the difference between it and its Hartree-Fock approximation), an even worse result would have been obtained. For then the hopping integral would have been simply hij which diverges for an infinite crystal, given fixed i,j.

The perturbation theory in the context of the full 1-band Hamiltonian is very complicated.  So there is still motivation to find a reasonable or "best" Hubbard Hamiltonian, which is clearly much simpler than ​H1b. N. P. Silva's thesis describes a variational approach that essentially overcomes the difficulty with Hubbard's arguments. I can't go into this, but I'll just mention the idea.  One has to answer the question,

How does one define "best Hamiltonian". Our approach was as follows. There's a famous variational theorem of statistical mechanics, 
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where F(H) = -(-1 ln tr exp(-(H), the exact free energy, and the trial density operator is written in terms of the trial Hamiltonian 
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So given the "exact" Hamiltonian, H1b, one takes 
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of Hubbard form (or any generalization of that, but simpler than H1b), which contains parameters, like ​Tij and U, choosing them to minimize 
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~

(

r

F

. This led to results that overcame the failure of  Hubbard's approach, under certain conditions on the parameters in H1b .  There were difficulties when these conditions weren't satisfied, and this led to complications that I won't go into.


One more important point: the fact that the ​Tij are exponentially small for large a means that we can essentially neglect all but the nearest-neighbor (or perhaps 2nd and maybe 3rd neighbor) T's. The most common form of the Hubbard Hamiltonian assumes nearest neighbor hopping only.

Properties of the Hubbard Hamiltonian; perturbation theory; Heisenberg and t-J models


I'll consider a slightly more complicated model, adding to the Hubbard Hamiltonian what Anderson called potential exchange terms, namely those that arise from the Coulomb matrix elements vijji. It turns out to give no added difficulty, and is suggested by the fact that such terms directly affect the magnetism, as we saw. So we consider the Hamiltonian in the form
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(18.2)

and treat the tij , Xij as parameters with the symmetry of the lattice. E.g., tij = t(Rij), and goes to zero rapidly with increasing |Rij|. We can take tii =0, because for a fixed Ne it gives rise to constant; and tij = tij * = tji . We also consider only U  > 0.

There are two limits where this model is easily solved. When U = Xij = 0, it becomes a model ("tight-binding") of non-interacting electrons. We already know therefore that the energy eigenstates are single Slater determinants with all possible occupancies of the Bloch functions.  Formally, you should realize that (9.2) implies
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This into (18.2) gives the first term =
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Usually tij > 0, so 
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0 is lowest. Of course the many-electron energies are each the sum 
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The other easy limit is tij = Xij = 0. Again, H is a function only of the occupation number operators ni(, so, again, the energy eigenstates are single determinants, but now with the Wannier functions occupied in all possible ways. For Ne < N, the ground state energy clearly occurs when there is 1 or 0 electrons at each site, i.e. 
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, and this energy is zero. It is clearly degenerate: for the 1/2-filled case, the degeneracy is 2N, all due to the spin. For the less-than-half-filled case, there is "orbital" degeneracy in addition to the spin-degeneracy. For simplicity, I'll limit our discussion to these cases. 

The first excited energy is U, obtained by moving an electron from one site to an occupied site, the next 2U, etc., so the spectrum consists of evenly spaced levels.

Draw figure e.g ((((((((, etc.

The narrow band regime


Our focus now is on the case of widely separated atoms, i.e. the narrow band case.  We implement this by considering tij and Xij as being small, and carrying out a perturbation theory for the low-lying states. As we saw, the unperturbed ground state is highly degenerate. A very convenient way of dealing with this is through the theory of the effective Hamiltonian, which I now go into.
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To apply this formalism we write


H = Ho + V,

where 
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and of course V​  contains the remainder, the t and X terms, which we write as



V = Vt + VX.

We choose the operator P as projecting on to the ground states of Ho. Then PHoP = 0, PHoQ = QHoP = PVX Q = QVXP = 0, so that
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To second order we can clearly drop the V in the denominator of the last term. Thus we find
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Let's look in detail at these terms. First the 1st-order term involving VX:
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Now we have, evidently, the z-component of the ith-site spin operator


Siz = (1/2)(ni( - ni( )

And, as before, the operator for the number of electrons at site i,


ni = ni( + ni(.

So


ni( = (1/2)(ni +2Siz)


ni( = (1/2)(ni - 2Siz).

Also, clearly,


ci(+ci( = Si+ (= Six + i Siy),

the spin raise operator for site i. So
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Thus the 1st order term can be written
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(25.1)


Now to the 2nd order term: 
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(25.2)

We can imagine starting out in some ground state on which this object operates. So we first hop an electron from site j to site i. Because Q forces this new state to be excited, this hop must give a doubly-occupied site i. For the 1/2-filled case this occurs automatically; for Ne < N, this condition must be imposed.


We can see that choosing Q = 
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 = -() precisely imposes this condition. Imagine an unperturbed state (1 on the right; the presence of P on the right forces that state to have no double occupancies. Because of the ci(+, a non-zero contribution to (25.2) can occur only if ni( = 0 in (1, and then the intermediate state has a (-spin at site i; the factor 
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 then insures that the intermediate state has site i doubly occupied.  Then the relevant spin sum in (25.2) is
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This is zero unless j' = i. Consider the term i' = j, and remember tii = 0.
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EMBED Equation.3[image: image91.wmf]
Since 
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Thus the contribution of these terms to Heff is
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EMBED Equation.3[image: image96.wmf])
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These are called 2-site terms.  They came from a process where an electron hops from a site, say i, and returns. This is the only possibility for the 1/2-filled case. 

But for less-than-1/2 filled, the electron might hop to a different site i' ( i, giving a "3-site" term. I won't discuss that in detail, but indicate it in the following, final expression for the effective Hamiltonian to 2nd order.
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(26.1)

Remember, for the Hubbard model we put Xij​ = 0.


Note that at 1/2 filling, the first term ("hopping term") and the 3-site term vanish.  Also, for small concentration x of holes in the 1/2 filled band the 3-site term will approach 0 with x more rapidly than the hopping term. (The hopping term is non-zero for 1 hole, whereas there must be at least 2 holes for the 3-site term to be non-zero.)

If we put Xij = Heff3-site  = 0, then we obtain what is called the t-J model, usually written as
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(27.1)

with J = 4t2/U. (Nearest neighbor hopping is assumed here, the sum <ij> meaning sum over all n.n. pairs, each taken once.) And this model has been studied extensively. Since the 3-site term is omitted, one might expect a difference between the t-J and Hubbard models, even for t/U small. Concentrations x of interest are not necessarily "small", although in La2-xSrxCuO4 (to which this model has been applied), optimum doping (x at which the superconducting critical temperature is maximum) is only about 0.15.


Although my goal is to show you some physical consequences of this theory for the 1/2 filled band, I'll first make some very limited remarks about the more general case.

A recent study concluded that including the full perturbation treatment of the Hubbard model to 2nd order reproduces quantitatively certain Hubbard spectra even for W as large as U, where W (( t) is the U = 0 bandwidth (H. Eskes and R. Eder, Phys. Rev. B 54, R14,226 (1996)). But neglecting the 3-site terms and wave function effects can give quite strong disagreement even for x < 0.1. These authors (and many others) use a different but basically equivalent formalism, which appears to be much more complicated than what I have presented. What they mean by wave function effects, translated into the formalism I've given, is that the eigenfunctions P( of Heff are only part of the eigenfunctions of H, the full eigenfunctions being (P + Q) (. This means that Q( enters into the physical quantities they consider. Note that Q( is given by (20.8). To see a different application where Q( is required, look at T. A. Kaplan, Hyunju Chang, S. D. Mahanti, J. F. Harrison in Electronic Properties of Solids Using Cluster Methods, edited by T. A. Kaplan and S. D. Mahanti (Plenum Press, N. Y. 1995).

Before discussing the application of the formalism we've developed, I have to address how our very artificial H-lattice model relates to realistic materials. In particular, what keeps the magnetic ions far apart? The narrow-band materials with 3d magnetic electrons, as far as I'm aware, are always ionic compounds, very often oxides, which involve non-magnetic anions (e.g., O2-). And it is these non-magnetic ions that keep the magnetic ions far apart.  Figures. 
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Half-filled Band

In this case Heff (eq. (26.1)) becomes the simple-looking Heisenberg Hamiltonian
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(29.1)

I've dropped various constant terms. Because of the projectors, ni  = 1 and
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where S = 1/2 for our case of a H-lattice. Our analysis leading to this Heisenberg model can be extended to more realistic cases. E.g. La2CuO4 where the magnetic ion is Cu2+, which has outer-electron configuration 3d9, so S = 1/2; NiO involves the magnetic ion Ni2+, which is 3d8, which implies S = 1; in EuO, it is the 4f electrons in Eu2+, 4f7, that provide the spin, S = 7/2. In these magnetic insulators, the Jij drop off rapidly with distance Rij. The model also is applicable to a very different class of materials, the heavy rare earth metals (Gd, Tb, Dy, …) where the 4f shell produces the magnetic electrons. In these metals the main source of the interaction is via the conduction electrons; this mechanism leads to a very different behavior with ​Rij, one where J oscillates with R and decreases only as R3 (called the RKKY or Ruderman, Kittel, Kasuya, Yosida interaction).


I want to consider the Jij as parameters, "exchange interactions", and consider two subjects: a. Spin waves in a ferromagnet and b. Ground states when there are competing exchange interactions ("frustration"). 

a. Spin waves in a ferromagnet


Physical examples of Heisenberg ferromagnets are EuO and Gd


Let us assume for simplicity that the J < 0 for nearest neighbors, 0 otherwise. So the Hamiltonian reads
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(30.1)

Here J =4t2/U - X12, 1 and 2 being nearest neighbor sites. We have in mind simple cubic lattices.  I apologize for changing the meaning of J. Then the ground state is the ferromagnetic state where the spins at all the sites are parallel, and have the maximum projection on some axis:
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This seems intuitively obvious. A proof is that in the state |F> the expectation value of every term in the Hamiltonian (i.e. for each pair i, j) reaches its absolute minimum value, -|J|S2. The ground state energy is


E0 = -|J|S2NZ/2 .

where Z is the number of n.n.'s of a site. NZ/2 is the number of n.n. pairs 

= 
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; (the 1/2 is needed to avoid double counting). And the total z-component of spin is Sz = NS.

Now consider the next lower value, Sz = NS - 1. For S = 1/2, this means flip one spin from up to down. There are N such spins, so the energy eigenstates will be linear combinations of these N states. The translational symmetry of the lattice suggests that the Bloch sums
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 EMBED Equation.3  [image: image107.wmf]>
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will be our eigenstates. Let's see this.
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Find that
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is independent of m.  Thus we find 
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where


Ek = E0 + Z|J|S(1 - (k).


The states |k> are known as Bloch spin wave states. A physical picture of these states is that the spins lie on the surface of a cone, the azimuthal angle propagating with wave vector k… draw on board.  This picture is justified by the fact that <k||Snz|k> is 

independent of n and, as you can show, <k|S​nxSmx + S​nySmy|k> = 

(2S/N) cos k ( (n - m). Note that for small k, (k = Ek - E0 goes as k2.

These excitations are actually seen e.g., in inelastic neutron scattering experiments.  Unfortunately, textbooks give experimental results only for transition metals (as far as I could find), where the Heisenberg model does not apply, and they "brag" about seeing the k2 dependence of (k. In fact this long wavelength behavior is much more general (Herring and Kittel) for ferromagnets. It is only in the behavior throughout the BZ that one can see differences in various types of models. I couldn't find a reference to such measurements on a true Heisenberg ferromagnet, e.g. EuO, to show you.

Ground states; competing interactions


Suppose J in (30.1) were positive. Then the spins intuitively would want to be antiparallel. So e.g., in 1 dimension you might expect …((((((((…to be the ground state. However it is easily seen to not be an eigenstate of H (because of the Six Sjx and 

Siy Sjy  pieces of  the spin dot product). The ground state, called the antiferromagnetic ground state (J > 0 is called an antiferromagnetic interaction), is much more complicated, and has been the subject of many papers, even just in 1D. 

Nevertheless, the simple quantum state …((i)((i+1)((i+2)((i+3) …can be considered an approximate ground state in a variational sense. It is the best ("lowest-energy") state of product form. This is called the mean- or molecular-field approximation (it can be generalized to finite temperature), and has given considerable insight into many experiments on materials with complex magnetic ordering. I want to consider this in more detail. 

I'll discuss here ideas that are quite old (circa early 60's), and although that is not a criterion for not discussing them, additional motivation comes from a recent experience of mine. Attending a conference July, 2000 entitled "Electronic Structure of Complex Materials", it turned out that most of the participants were unaware of these ideas (which are described in the literature), even though they were intensely into band structure calculations of materials with complex magnetic ordering! 

Staying with 1D for the moment, with n.n. interactions, there is a 3rd possibility: the spins might have different S values; e.g. they might alternate  1, 1/2, 1, 1/2…  


Draw picture.

In this case, with J > 0, there would be a net spin for the whole crystal, in contrast to the antiferromagnet. When the spins are not all parallel, and yet there is a net spin, the spin state is said to be ferrimagnetic. History: Neél-Fe3O4-1948 (also idea of AF-1932); Yafet Kittel 1952; all with simple sublattice structure until 1959, spirals etc., Yoshimori, Kaplan, Villain, "competing exchange" or “frustration”.

Consider now spins on a triangular lattice, maintaining n.n. J > 0.   Draw picture. You see it's not obvious what the spins want to do: if you make these antiparallel, then they both can't be antiparallel to this 3rd one. This is an example of what was originally called "competing interactions", "frustration" being used by many in more recent times. A precise definition: If the interactions in (28.1) are such that each pair interaction cannot be simultaneously minimized, considering the spins to be classical vectors, then the interactions are competing. (The precise form of the Hamiltonian can be somewhat generalized for the purpose of this definition.) 

Let's look at this mean field approximation more completely. The expectation value of (29.1) in a state which is the product of spin states at each site is, clearly,
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If all the spins have S = 1/2, then 
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, independent of i. But for larger S, other values of 
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 are possible. However, to minimize E, 
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 must be its maximum value for all i. 

Proof: Suppose for fixed 
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> are chosen to minimize E. Define         = sum on i & j, i≠n, j≠n, and         = sum on j, j≠n. Then
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Clearly 
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 must be < 0; otherwise, 
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 replaced by its negative would lower E.  But if 
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 is less than its maximum value, E will be lowered by increasing it. QED. This point was apparently missed in D. Mattis’ book, The Theory of Magnetism.


Hence the minimum value of E is 
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(34.1)

where 
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, all i. (I replaced the maximum-magnitude 
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. Thus the mean field approximation leads to a Heisenberg model where the spins are classical spin vectors of fixed length; this is called the classical Heisenberg model. To further simplify, the magnitudes of the spins can be absorbed into the Jij, giving an expression that looks like (34.1) but where the 
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 are unit vectors. 


Thus to complete the calculation we are to find the set of classical vectors 
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 which minimize e (eq. 34.1) subject to the constraints 
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The 
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 are of course real. Another closely related problem is where the energy is that of the Ising model, where  the 
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 are replaced by scalars si which can take 2 values, + 1. The usual approach is to use the method of Lagrange multipliers. One looks for a stationary point, so the infinitesimal variation of the energy is set to zero: (e = 2
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. The infinitesimal variation of (34.1) gives 
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 = 0. Multiplying by the Lagrange multiplier (i and summing gives 2( (i
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 = 0. Subtracting this from (e and ignoring the constraints (i.e. considering the (
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 to be arbitrary infinitesimal vectors) then yields
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(35.2)

One must now solve these equations for arbitrary (i, and find the minimum energy solution (the set of (i and 
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) which satisfies the constraints. Using (34.1) and (35.2), the energy is seen to be e =( (i.


Even though the Jij possess the symmetry of the lattice, and (35.2) is linear in the 
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, this task is impossibly difficult, because the (i in general have no symmetry (relating (i and (j). So, as Luttinger stated [Phys. Rev. 81, 1015 (1951)], this method is useless. We're still left with the problem of determining what set of 1023 unit vectors minimize e. 

The Luttinger-Tisza method. 


Luttinger and Tisza originally introduced this method in trying to minimize the energy of interacting dipoles on a lattice. They never succeeded, although they did come up with approximate solutions. Later Luttinger (1951) applied the LT method to the Ising case and partially succeeded. I think we were the first to apply this elegant method to the vector model we're considering, and we partially succeeded. The existence of these "partial" successes should tell you that the method might or might not work, and that is true.


If we sum equations (35.1) over all i in the crystal, we get
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(36.1)

For the moment consider a different problem, namely that of minimizing e subject to the one constraint (36.1), called the weak constraint.  Then the stationarity equations, analogous to (35.2) are
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(36.2)

So the low-symmetry (i are replaced by the single multiplier (, and this equation has all the symmetry of the lattice, i.e. of the Jij. Clearly the energy e = N (. Hence the problem of finding the minimum energy is that of finding the minimum eigenvalue of the matrix Jij. Because of the high symmetry, this problem is often tractable. Furthermore, if a minimum-energy solution to (36.2) subject to (36.1) happens to satisfy the strong constraints, it follows that this solution is an exact solution to the original physical problem. Explain that every state that satisfies the "strong constraints" (35.1) satisfies the weak constraint, but not vice versa; draw "set theoretical" picture. If such a solution exists, the method is said to "work", if not, the method "fails".


Now look at the details for the case of spins on a Bravais lattice. That is, there is one spin per primitive unit cell. Examples: s.c., b.c.c., f.c.c, triangular lattice. Then Jij = J(Ri - Rj).  But
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is independent of i.  So exp ik( Ri are the eigenvectors of Jij with corresponding eigenvalues jk. Remembering that jij = jji, we see that jk = j​-k. Suppose only k = + k0 gives the minimum eigenvalue. Then (36.2) says that each rectangular component si(,( = x,y,z,  must be of the form si( = A( exp(ik0 (Ri) + A( * exp(-ik0 (Ri) for a minimum energy solution. Further, any linear combination,
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(37.1)

where 
[image: image147.wmf] are the usual Cartesian unit vectors, is a minimum energy solution. And, in fact, this is the most general solution to our weak constraint problem. Clearly, the weak constraint can always be satisfied by multiplying the A( by a constant independent of (.


But a particular choice, Ax = 1/2, Ay = 1/2i, Az = 0 gives
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(37.2)

which satisfies the strong constraints. So the LT method works in this case, and we must conclude that the simple "spiral" gives the absolute minimum energy. If there is more than one k-value that minimizes jk, the additional degeneracy does not add any restriction; in fact it can facilitate construction of a solution to the weak constraint problem that satisfies the strong constraints. Final conclusion: For spins on a Bravais lattice, the classical Heisenberg energy is always minimized by some spiral (37.2). This rather general result is due to Lyons and Kaplan, PR 120, 1580 (1960). Mention the 1959 papers of Yoshimori, Kaplan and Villain.


Draw some special spirals. Note possible incommensurability.


Limitations: non-Bravais lattices. E.g. spinels. LT does not work in general. LK generalization of LT method--partial success.


Experiments: neutron diffraction "sees" magnetic ordering; explain; antiferromagnetism seen ~1949; ferrimagnetism, collinear < 1959. Spirals and related seen 1959-1960, rare earths, spinel, MnO2.


Return to work on cubic spinel. Instability of Yafet-Kittel state. Failure of LT.  LK generalization.  Partial successes. Experiment, MnCr2O4 and CoCr2O4. See D. Lyons, T. A. Kaplan, K. Dwight, N. Menyuk, Phys. Rev. 120, 1580 (1960).


Review: Magnetic Ordering in Heisenberg Magnets, by T. A. Kaplan, in The Molecular Designing of Materials and Devices, edited by A. von Hippel, MIT Press, Cambridge, Mass. 1965 


Double Exchange model. Combine 1-band Hubbard with localized electrons at each site, adding intra-site ferromagnetic exchange, strength j, between the itinerant electrons described by the Hubbard model and the localized electrons. Then for DE have j (infinity, in which case the U-term is irrelevant.
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